案例三:

统计共同好友

任务需求:

如下的文本,

A:B,C,D,F,E,O
B:A,C,E,K
C:F,A,D,I
D:A,E,F,L
E:B,C,D,M,L
F:A,B,C,D,E,O,M
G:A,C,D,E,F
H:A,C,D,E,O
I:A,O
J:B,O
K:A,C,D
L:D,E,F
M:E,F,G
O:A,H,I,J

求出哪些人两两之间有共同好友,及他俩的共同好友都是谁

b -a
c -a
d -a
a -b

c -b

b -e

b -j

解题思路:

写两个mapreduce

第一个MR输出结果如:
b -> a e j
c ->a b e f h

第二个MR输出结果如:
a-e b
a-j b
e-j b
a-b c 
a-e c

比如:

a-e b c d
a-m e f

代码如下:

第一个mapper:FindFriendMapTaskByOne
package com.gec.demo;

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper; import java.io.IOException;
import java.io.PrintStream; public class FindFriendMapTaskByOne extends Mapper<LongWritable, Text,Text,Text> {
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String line=value.toString();
String[] datas=line.split(":");
String user=datas[0]; String []friends=datas[1].split(",");
for (String friend : friends) {
context.write(new Text(friend),new Text(user));
} }
}

第一个reducer:

package com.gec.demo;

import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer; import java.io.IOException; public class FindFriendReducerTaskByOne extends Reducer<Text,Text,Text,Text> {
@Override
protected void reduce(Text key, Iterable<Text> values, Context context) throws IOException, InterruptedException {
StringBuffer strBuf=new StringBuffer(); for (Text value : values) { strBuf.append(value).append("-");
} context.write(key,new Text(strBuf.toString()));
}
}

第一个job

package com.gec.demo;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import java.io.IOException; public class FindFriendJobByOne {
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
Configuration configuration=new Configuration(); Job job=Job.getInstance(configuration); //设置Driver类
job.setJarByClass(FindFriendJobByOne.class); //设置运行那个map task
job.setMapperClass(FindFriendMapTaskByOne .class);
//设置运行那个reducer task
job.setReducerClass(FindFriendReducerTaskByOne .class); //设置map task的输出key的数据类型
job.setMapOutputKeyClass(Text.class);
//设置map task的输出value的数据类型
job.setMapOutputValueClass(Text.class); job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class); //指定要处理的数据所在的位置
FileInputFormat.setInputPaths(job, "D://Bigdata//4、mapreduce//day05//homework//friendhomework.txt");
//指定处理完成之后的结果所保存的位置
FileOutputFormat.setOutputPath(job, new Path("D://Bigdata//4、mapreduce//day05//homework//output"));
//向yarn集群提交这个job
boolean res = job.waitForCompletion(true);
System.exit(res?0:1);
}
}

得出结果:

第二个mapper:

package com.gec.demo;

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper; import java.io.IOException; public class FindFriendMapTaskByTwo extends Mapper<LongWritable, Text,Text,Text> {
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String line=value.toString();
String []datas=line.split("\t");
String []userlist=datas[1].split("-");
for (int i=0;i<userlist.length-1;i++){
for (int j=i+1;j<userlist.length;j++){
String user1=userlist[i];
String user2=userlist[j];
String friendkey=user1+"-"+user2;
context.write(new Text(friendkey),new Text(datas[0]));
}
}
}
}

第二个reducer:

package com.gec.demo;

import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer; import java.io.IOException; public class FindFriendReducerTaskByTwo extends Reducer<Text,Text,Text,Text> {
@Override
protected void reduce(Text key, Iterable<Text> values, Context context) throws IOException, InterruptedException {
StringBuffer stringBuffer=new StringBuffer();
for (Text value : values) {
stringBuffer.append(value).append(",");
} context.write(key,new Text(stringBuffer.toString()));
}
}

第二个job:

package com.gec.demo;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import java.io.IOException; public class FindFriendJobByTwo {
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
Configuration configuration=new Configuration(); Job job=Job.getInstance(configuration); //设置Driver类
job.setJarByClass(FindFriendJobByTwo.class); //设置运行那个map task
job.setMapperClass(FindFriendMapTaskByTwo .class);
//设置运行那个reducer task
job.setReducerClass(FindFriendReducerTaskByTwo .class); //设置map task的输出key的数据类型
job.setMapOutputKeyClass(Text.class);
//设置map task的输出value的数据类型
job.setMapOutputValueClass(Text.class); job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class); //指定要处理的数据所在的位置
FileInputFormat.setInputPaths(job, "D://Bigdata//4、mapreduce//day05//homework//friendhomework3.txt");
//指定处理完成之后的结果所保存的位置
FileOutputFormat.setOutputPath(job, new Path("D://Bigdata//4、mapreduce//day05//homework//output"));
//向yarn集群提交这个job
boolean res = job.waitForCompletion(true);
System.exit(res?0:1);
}
}

得出结果:

案例四

MapReduce中多表合并案例

1)需求:

订单数据表t_order:

id

pid

amount

1001

01

1

1002

02

2

1003

03

3

商品信息表t_product

id

pname

01

小米

02

华为

03

格力

将商品信息表中数据根据商品id合并到订单数据表中。

最终数据形式:

id

pname

amount

1001

小米

1

1001

小米

1

1002

华为

2

1002

华为

2

1003

格力

3

1003

格力

3

3.4.1 需求1:reduce端表合并(数据倾斜)

通过将关联条件作为map输出的key,将两表满足join条件的数据并携带数据所来源的文件信息,发往同一个reduce task,在reduce中进行数据的串联。

1)创建商品和订合并后的bean类

package com.gec.mapreduce.table;

import java.io.DataInput;

import java.io.DataOutput;

import java.io.IOException;

import org.apache.hadoop.io.Writable;

public class TableBean implements Writable {

private String order_id; // 订单id

private String p_id; // 产品id

private int amount; // 产品数量

private String pname; // 产品名称

private String flag;// 表的标记

public TableBean() {

super();

}

public TableBean(String order_id, String p_id, int amount, String pname, String flag) {

super();

this.order_id = order_id;

this.p_id = p_id;

this.amount = amount;

this.pname = pname;

this.flag = flag;

}

public String getFlag() {

return flag;

}

public void setFlag(String flag) {

this.flag = flag;

}

public String getOrder_id() {

return order_id;

}

public void setOrder_id(String order_id) {

this.order_id = order_id;

}

public String getP_id() {

return p_id;

}

public void setP_id(String p_id) {

this.p_id = p_id;

}

public int getAmount() {

return amount;

}

public void setAmount(int amount) {

this.amount = amount;

}

public String getPname() {

return pname;

}

public void setPname(String pname) {

this.pname = pname;

}

@Override

public void write(DataOutput out) throws IOException {

out.writeUTF(order_id);

out.writeUTF(p_id);

out.writeInt(amount);

out.writeUTF(pname);

out.writeUTF(flag);

}

@Override

public void readFields(DataInput in) throws IOException {

this.order_id = in.readUTF();

this.p_id = in.readUTF();

this.amount = in.readInt();

this.pname = in.readUTF();

this.flag = in.readUTF();

}

@Override

public String toString() {

return order_id + "\t" + p_id + "\t" + amount + "\t" ;

}

}

2)编写TableMapper程序

package com.gec.mapreduce.table;

import java.io.IOException;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Mapper;

import org.apache.hadoop.mapreduce.lib.input.FileSplit;

public class TableMapper extends Mapper<LongWritable, Text, Text, TableBean>{

TableBean bean = new TableBean();

Text k = new Text();

@Override

protected void map(LongWritable key, Text value, Context context)

throws IOException, InterruptedException {

// 1 获取输入文件类型

FileSplit split = (FileSplit) context.getInputSplit();

String name = split.getPath().getName();

// 2 获取输入数据

String line = value.toString();

// 3 不同文件分别处理

if (name.startsWith("order")) {// 订单表处理

// 3.1 切割

String[] fields = line.split(",");

// 3.2 封装bean对象

bean.setOrder_id(fields[0]);

bean.setP_id(fields[1]);

bean.setAmount(Integer.parseInt(fields[2]));

bean.setPname("");

bean.setFlag("0");

k.set(fields[1]);

}else {// 产品表处理

// 3.3 切割

String[] fields = line.split(",");

// 3.4 封装bean对象

bean.setP_id(fields[0]);

bean.setPname(fields[1]);

bean.setFlag("1");

bean.setAmount(0);

bean.setOrder_id("");

k.set(fields[0]);

}

// 4 写出

context.write(k, bean);

}

}

3)编写TableReducer程序

package com.gec.mapreduce.table;

import java.io.IOException;

import java.util.ArrayList;

import org.apache.commons.beanutils.BeanUtils;

import org.apache.hadoop.io.NullWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Reducer;

public class TableReducer extends Reducer<Text, TableBean, TableBean, NullWritable> {

@Override

protected void reduce(Text key, Iterable<TableBean> values, Context context)

throws IOException, InterruptedException {

// 1准备存储订单的集合

ArrayList<TableBean> orderBeans = new ArrayList<>();

// 2 准备bean对象

TableBean pdBean = new TableBean();

for (TableBean bean : values) {

if ("0".equals(bean.getFlag())) {// 订单表

// 拷贝传递过来的每条订单数据到集合中

TableBean orderBean = new TableBean();

try {

BeanUtils.copyProperties(orderBean, bean);

} catch (Exception e) {

e.printStackTrace();

}

orderBeans.add(orderBean);

} else {// 产品表

try {

// 拷贝传递过来的产品表到内存中

BeanUtils.copyProperties(pdBean, bean);

} catch (Exception e) {

e.printStackTrace();

}

}

}

// 3 表的拼接

for(TableBean bean:orderBeans){

bean.setP_id(pdBean.getPname());

// 4 数据写出去

context.write(bean, NullWritable.get());

}

}

}

4)编写TableDriver程序

package com.gec.mapreduce.table;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.NullWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class TableDriver {

public static void main(String[] args) throws Exception {

// 1 获取配置信息,或者job对象实例

Configuration configuration = new Configuration();

Job job = Job.getInstance(configuration);

// 2 指定本程序的jar包所在的本地路径

job.setJarByClass(TableDriver.class);

// 3 指定本业务job要使用的mapper/Reducer业务类

job.setMapperClass(TableMapper.class);

job.setReducerClass(TableReducer.class);

// 4 指定mapper输出数据的kv类型

job.setMapOutputKeyClass(Text.class);

job.setMapOutputValueClass(TableBean.class);

// 5 指定最终输出的数据的kv类型

job.setOutputKeyClass(TableBean.class);

job.setOutputValueClass(NullWritable.class);

// 6 指定job的输入原始文件所在目录

FileInputFormat.setInputPaths(job, new Path(args[0]));

FileOutputFormat.setOutputPath(job, new Path(args[1]));

// 7 将job中配置的相关参数,以及job所用的java类所在的jar包, 提交给yarn去运行

boolean result = job.waitForCompletion(true);

System.exit(result ? 0 : 1);

}

}

3)运行程序查看结果

1001       小米       1

1001       小米       1

1002       华为       2

1002       华为       2

1003       格力       3

1003       格力       3

缺点:这种方式中,合并的操作是在reduce阶段完成,reduce端的处理压力太大,map节点的运算负载则很低,资源利用率不高,且在reduce阶段极易产生数据倾斜

解决方案: map端实现数据合并

3.4.2 需求2:map端表合并(Distributedcache)

1)分析

适用于关联表中有小表的情形;

可以将小表分发到所有的map节点,这样,map节点就可以在本地对自己所读到的大表数据进行合并并输出最终结果,可以大大提高合并操作的并发度,加快处理速度。

2)实操案例

(1)先在驱动模块中添加缓存文件

package test;

import java.net.URI;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.NullWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class DistributedCacheDriver {

public static void main(String[] args) throws Exception {

// 1 获取job信息

Configuration configuration = new Configuration();

Job job = Job.getInstance(configuration);

// 2 设置加载jar包路径

job.setJarByClass(DistributedCacheDriver.class);

// 3 关联map

job.setMapperClass(DistributedCacheMapper.class);

// 4 设置最终输出数据类型

job.setOutputKeyClass(Text.class);

job.setOutputValueClass(NullWritable.class);

// 5 设置输入输出路径

FileInputFormat.setInputPaths(job, new Path(args[0]));

FileOutputFormat.setOutputPath(job, new Path(args[1]));

// 6 加载缓存数据

job.addCacheFile(new URI("file:/e:/cache/pd.txt"));

// 7 map端join的逻辑不需要reduce阶段,设置reducetask数量为0

job.setNumReduceTasks(0);

// 8 提交

boolean result = job.waitForCompletion(true);

System.exit(result ? 0 : 1);

}

}

(2)读取缓存的文件数据

package test;

import java.io.BufferedReader;

import java.io.FileInputStream;

import java.io.IOException;

import java.io.InputStreamReader;

import java.util.HashMap;

import java.util.Map;

import org.apache.commons.lang.StringUtils;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.NullWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Mapper;

public class DistributedCacheMapper extends Mapper<LongWritable, Text, Text, NullWritable>{

Map<String, String> pdMap = new HashMap<>();

@Override

protected void setup(Mapper<LongWritable, Text, Text, NullWritable>.Context context)

throws IOException, InterruptedException {

// 1 获取缓存的文件

BufferedReader reader = new BufferedReader(new InputStreamReader(new FileInputStream("pd.txt(的完整路径)")));

String line;

while(StringUtils.isNotEmpty(line = reader.readLine())){

// 2 切割

String[] fields = line.split("\t");

// 3 缓存数据到集合

pdMap.put(fields[0], fields[1]);

}

// 4 关流

reader.close();

}

Text k = new Text();

@Override

protected void map(LongWritable key, Text value, Context context)

throws IOException, InterruptedException {

// 1 获取一行

String line = value.toString();

// 2 截取

String[] fields = line.split("\t");

// 3 获取订单id

String orderId = fields[1];

// 4 获取商品名称

String pdName = pdMap.get(orderId);

// 5 拼接

k.set(line + "\t"+ pdName);

// 6 写出

context.write(k, NullWritable.get());

}

}

案例五

求每个订单中最贵的商品(GroupingComparator)

1)需求

有如下订单数据

订单id

商品id

成交金额

Order_0000001

Pdt_01

222.8

Order_0000001

Pdt_05

25.8

Order_0000002

Pdt_03

522.8

Order_0000002

Pdt_04

122.4

Order_0000002

Pdt_05

722.4

Order_0000003

Pdt_01

222.8

Order_0000003

Pdt_02

33.8

现在需要求出每一个订单中最贵的商品。

2)输入数据

输出数据预期:

3)分析

(1)利用“订单id和成交金额”作为key,可以将map阶段读取到的所有订单数据按照id分区,按照金额排序,发送到reduce。

(2)在reduce端利用groupingcomparator将订单id相同的kv聚合成组,然后取第一个即是最大值。

4)实现

定义订单信息OrderBean

package com.gec.mapreduce.order;

import java.io.DataInput;

import java.io.DataOutput;

import java.io.IOException;

import org.apache.hadoop.io.WritableComparable;

public class OrderBean implements WritableComparable<OrderBean> {

private String orderId;

private double price;

public OrderBean() {

super();

}

public OrderBean(String orderId, double price) {

super();

this.orderId = orderId;

this.price = price;

}

public String getOrderId() {

return orderId;

}

public void setOrderId(String orderId) {

this.orderId = orderId;

}

public double getPrice() {

return price;

}

public void setPrice(double price) {

this.price = price;

}

@Override

public void readFields(DataInput in) throws IOException {

this.orderId = in.readUTF();

this.price = in.readDouble();

}

@Override

public void write(DataOutput out) throws IOException {

out.writeUTF(orderId);

out.writeDouble(price);

}

@Override

public int compareTo(OrderBean o) {

// 1 先按订单id排序(从小到大)

int result = this.orderId.compareTo(o.getOrderId());

if (result == 0) {

// 2 再按金额排序(从大到小)

result = price > o.getPrice() ? -1 : 1;

}

return result;

}

@Override

public String toString() {

return orderId + "\t" + price ;

}

}

编写OrderSortMapper处理流程

package com.gec.mapreduce.order;

import java.io.IOException;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.NullWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Mapper;

public class OrderSortMapper extends Mapper<LongWritable, Text, OrderBean, NullWritable>{

OrderBean bean = new OrderBean();

@Override

protected void map(LongWritable key, Text value,

Context context)throws IOException, InterruptedException {

// 1 获取一行数据

String line = value.toString();

// 2 截取字段

String[] fields = line.split("\t");

// 3 封装bean

bean.setOrderId(fields[0]);

bean.setPrice(Double.parseDouble(fields[2]));

// 4 写出

context.write(bean, NullWritable.get());

}

}

编写OrderSortReducer处理流程

package com.gec.mapreduce.order;

import java.io.IOException;

import org.apache.hadoop.io.NullWritable;

import org.apache.hadoop.mapreduce.Reducer;

public class OrderSortReducer extends Reducer<OrderBean, NullWritable, OrderBean, NullWritable>{

@Override

protected void reduce(OrderBean bean, Iterable<NullWritable> values,

Context context) throws IOException, InterruptedException {

// 直接写出

context.write(bean, NullWritable.get());

}

}

编写OrderSortDriver处理流程

package com.gec.mapreduce.order;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.NullWritable;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class OrderSortDriver {

public static void main(String[] args) throws Exception {

// 1 获取配置信息

Configuration conf = new Configuration();

Job job = Job.getInstance(conf);

// 2 设置jar包加载路径

job.setJarByClass(OrderSortDriver.class);

// 3 加载map/reduce类

job.setMapperClass(OrderSortMapper.class);

job.setReducerClass(OrderSortReducer.class);

// 4 设置map输出数据key和value类型

job.setMapOutputKeyClass(OrderBean.class);

job.setMapOutputValueClass(NullWritable.class);

// 5 设置最终输出数据的key和value类型

job.setOutputKeyClass(OrderBean.class);

job.setOutputValueClass(NullWritable.class);

// 6 设置输入数据和输出数据路径

FileInputFormat.setInputPaths(job, new Path(args[0]));

FileOutputFormat.setOutputPath(job, new Path(args[1]));

// 10 设置reduce端的分组

job.setGroupingComparatorClass(OrderSortGroupingComparator.class);

// 7 设置分区

job.setPartitionerClass(OrderSortPartitioner.class);

// 8 设置reduce个数

job.setNumReduceTasks(3);

// 9 提交

boolean result = job.waitForCompletion(true);

System.exit(result ? 0 : 1);

}

}

编写OrderSortPartitioner处理流程

package com.gec.mapreduce.order;

import org.apache.hadoop.io.NullWritable;

import org.apache.hadoop.mapreduce.Partitioner;

public class OrderSortPartitioner extends Partitioner<OrderBean, NullWritable>{

@Override

public int getPartition(OrderBean key, NullWritable value, int numReduceTasks) {

return (key.getOrderId().hashCode() & Integer.MAX_VALUE) % numReduceTasks;

}

}

编写OrderSortGroupingComparator处理流程

package com.gec.mapreduce.order;

import org.apache.hadoop.io.WritableComparable;

import org.apache.hadoop.io.WritableComparator;

public class OrderSortGroupingComparator extends WritableComparator {

protected OrderSortGroupingComparator() {

super(OrderBean.class, true);

}

@Override

public int compare(WritableComparable a, WritableComparable b) {

OrderBean abean = (OrderBean) a;

OrderBean bbean = (OrderBean) b;

// 将orderId相同的bean都视为一组

return abean.getOrderId().compareTo(bbean.getOrderId());

}

}

MapReduce案例:统计共同好友+订单表多表合并+求每个订单中最贵的商品的更多相关文章

  1. 【Hadoop学习之十】MapReduce案例分析二-好友推荐

    环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk8 hadoop-3.1.1 最应该推荐的好友TopN,如何排名 ...

  2. MapReduce案例二:好友推荐

    1.需求 推荐好友的好友 图1: 2.解决思路 3.代码 3.1MyFoF类代码 说明: 该类定义了所加载的配置,以及执行的map,reduce程序所需要加载运行的类 package com.hado ...

  3. Hadoop Mapreduce 案例 wordcount+统计手机流量使用情况

    mapreduce设计思想 概念:它是一个分布式并行计算的应用框架它提供相应简单的api模型,我们只需按照这些模型规则编写程序,即可实现"分布式并行计算"的功能. 案例一:word ...

  4. MapReduce 单词统计案例编程

    MapReduce 单词统计案例编程 一.在Linux环境安装Eclipse软件 1.   解压tar包 下载安装包eclipse-jee-kepler-SR1-linux-gtk-x86_64.ta ...

  5. MapReduce:给出children-parents(孩子——父母)表,要求输出grandchild-grandparent(孙子——爷奶)表

    hadoop中使用MapReduce单表关联案例: MapReduce:给出children-parents(孩子——父母)表,要求输出grandchild-grandparent(孙子——爷奶)表. ...

  6. mapreduce案例:获取PI的值

    mapreduce案例:获取PI的值 * content:核心思想是向以(0,0),(0,1),(1,0),(1,1)为顶点的正方形中投掷随机点. * 统计(0.5,0.5)为圆心的单位圆中落点占总落 ...

  7. 【Hadoop离线基础总结】MapReduce案例之自定义groupingComparator

    MapReduce案例之自定义groupingComparator 求取Top 1的数据 需求 求出每一个订单中成交金额最大的一笔交易 订单id 商品id 成交金额 Order_0000005 Pdt ...

  8. 【Cloud Computing】Hadoop环境安装、基本命令及MapReduce字数统计程序

    [Cloud Computing]Hadoop环境安装.基本命令及MapReduce字数统计程序 1.虚拟机准备 1.1 模板机器配置 1.1.1 主机配置 IP地址:在学校校园网Wifi下连接下 V ...

  9. EXP/IMP迁移案例,IMP遭遇导入表的表空间归属问题

    生产环境: 源数据库:Windows Server + Oracle 11.2.0.1 目标数据库:SunOS + Oracle 11.2.0.3 1.确认迁移需求:源数据库cssf 用户所有表和数据 ...

随机推荐

  1. 5-log4j2.xml配置文件各个节点详解

    具体配置参考官网:http://logging.apache.org/log4j/2.x/manual/configuration.html 一.log.xml文件的大致结构 <?xml ver ...

  2. Day7作业及默写

    1. 判断一个数是否是水仙花数, 水仙花数是一个三位数, 三位数的每一位的三次方的和还等于这个数. 那这个数就是一个水仙花数. 例如: 153 = 1**3 + 5**3 + 3**3 InputNu ...

  3. 2019-03-07-day006-小数据池

    01 昨日内容回顾 字典: 映射,{} 键值对的形式存储,容器型数据类型,key 唯一的,可哈希的,value任意数据类型,对象. 3.6之前无序的, 3.6之后,有序的(第一次创建字典的顺序) 特点 ...

  4. JetBrains Goland 2018.2.1最新版破解

    JetBrains GoLand 2018.2.1破解版是JetBrains的新商业IDE,旨在为Go开发提供符合人体工程学的环境.新的IDE通过特定于Go语言的编码辅助和工具集成扩展了Intelli ...

  5. Non-technical Blog Recording on Day of Sep. 19th 2017 in Retrospection.

    Unfortunately, I heard a resignation message verbally from ESU (her name is: Su Yi in Chinese, Su fr ...

  6. React native Configuration with name 'default' not found.

    添加插件后出现异常 FAILURE: Build failed with an exception. * What went wrong: A problem occurred configuring ...

  7. 12.2 关闭DLM 自动收集统计信息 (SCM0)ORA-00600之[ksliwat: bad wait time]

    一.报错日志 db_alert ORA-: ??????, ??: [ksliwat: bad wait time], [], [], [], [], [], [], [], [], [], [], ...

  8. Python之路,第十六篇:Python入门与基础16

    python3   bytes 和 bytearrary bytes 二进制文件的读写: 什么是二进制文件读: 文件中以字节(byte)为单位存储,不以换行符(\n)为单位分隔内容的文件: f = o ...

  9. base标签对svg的影响

    页面地址:http://127.0.0.1:8080/fullLink_node.html?project_id=2 base:<base href="http://127.0.0.1 ...

  10. c日志宏

    仅供参考,不推荐 #ifdef _DEBUG #define LOGDEBUG(format, ...)\ {\ FILE *fp = fopen("nccli.log", &qu ...