P2221 [HAOI2012]高速公路
思路
考虑每一条边的贡献,然后推式子
\]
然后用线段树维护就好了
代码
#include <cstdio>
#include <algorithm>
#include <cstring>
#define int long long
using namespace std;
const int MAXN = 100100;
namespace Seg1{//v_i
int seg[MAXN<<2]={},tag[MAXN<<2]={};
void pushup(int o){
seg[o]=seg[o<<1]+seg[o<<1|1];
}
void build(int l,int r,int o,int *a){
if(l==r){
seg[o]=a[l];
return;
}
int mid=(l+r)>>1;
build(l,mid,o<<1,a);
build(mid+1,r,o<<1|1,a);
pushup(o);
}
void pushdown(int o,int ln,int rn){
if(tag[o]){
seg[o<<1]+=tag[o]*ln;
seg[o<<1|1]+=tag[o]*rn;
tag[o<<1]+=tag[o];
tag[o<<1|1]+=tag[o];
tag[o]=0;
}
}
void add(int L,int R,int l,int r,int o,int c){
if(L<=l&&r<=R){
seg[o]+=c*(r-l+1);
tag[o]+=c;
return;
}
int mid=(l+r)>>1;
pushdown(o,mid-l+1,r-mid);
if(L<=mid)
add(L,R,l,mid,o<<1,c);
if(R>mid)
add(L,R,mid+1,r,o<<1|1,c);
pushup(o);
}
int query(int L,int R,int l,int r,int o){
if(L<=l&&r<=R){
return seg[o];
}
int mid=(l+r)>>1,ans=0;
pushdown(o,mid-l+1,r-mid);
if(L<=mid)
ans+=query(L,R,l,mid,o<<1);
if(R>mid)
ans+=query(L,R,mid+1,r,o<<1|1);
return ans;
}
};
namespace Seg2{//v_i*i
int seg[MAXN<<2]={},tag[MAXN<<2]={};
int sum(int l,int r){
return (l+r)*(r-l+1)/2;
}
void pushup(int o){
seg[o]=seg[o<<1]+seg[o<<1|1];
}
void build(int l,int r,int o,int *a){
if(l==r){
seg[o]=a[l]*l;
return;
}
int mid=(l+r)>>1;
build(l,mid,o<<1,a);
build(mid+1,r,o<<1|1,a);
pushup(o);
}
void pushdown(int o,int lx,int rx){
if(tag[o]){
int mid=(lx+rx)>>1;
seg[o<<1]+=tag[o]*sum(lx,mid);
seg[o<<1|1]+=tag[o]*sum(mid+1,rx);
tag[o<<1]+=tag[o];
tag[o<<1|1]+=tag[o];
tag[o]=0;
}
}
void add(int L,int R,int l,int r,int o,int c){
if(L<=l&&r<=R){
seg[o]+=c*sum(l,r);
tag[o]+=c;
return;
}
int mid=(l+r)>>1;
pushdown(o,l,r);
if(L<=mid)
add(L,R,l,mid,o<<1,c);
if(R>mid)
add(L,R,mid+1,r,o<<1|1,c);
pushup(o);
}
int query(int L,int R,int l,int r,int o){
if(L<=l&&r<=R){
return seg[o];
}
int mid=(l+r)>>1,ans=0;
pushdown(o,l,r);
if(L<=mid)
ans+=query(L,R,l,mid,o<<1);
if(R>mid)
ans+=query(L,R,mid+1,r,o<<1|1);
return ans;
}
};
namespace Seg3{//vi*i^2
int seg[MAXN<<2]={},tag[MAXN<<2]={};
void pushup(int o){
seg[o]=seg[o<<1]+seg[o<<1|1];
}
int f(int x){
return (2*x+1)*(x+1)*x/6;
}
int sum(int l,int r){
return f(r)-f(l-1);
}
void build(int l,int r,int o,int *a){
if(l==r){
seg[o]=a[l]*l*l;
return;
}
int mid=(l+r)>>1;
build(l,mid,o<<1,a);
build(mid+1,r,o<<1|1,a);
pushup(o);
}
void pushdown(int o,int lx,int rx){
if(tag[o]){
int mid=(lx+rx)>>1;
seg[o<<1]+=tag[o]*sum(lx,mid);
seg[o<<1|1]+=tag[o]*sum(mid+1,rx);
tag[o<<1]+=tag[o];
tag[o<<1|1]+=tag[o];
tag[o]=0;
}
}
void add(int L,int R,int l,int r,int o,int c){
if(L<=l&&r<=R){
seg[o]+=c*sum(l,r);
tag[o]+=c;
return;
}
int mid=(l+r)>>1;
pushdown(o,l,r);
if(L<=mid)
add(L,R,l,mid,o<<1,c);
if(R>mid)
add(L,R,mid+1,r,o<<1|1,c);
pushup(o);
}
int query(int L,int R,int l,int r,int o){
if(L<=l&&r<=R){
return seg[o];
}
int mid=(l+r)>>1,ans=0;
pushdown(o,l,r);
if(L<=mid)
ans+=query(L,R,l,mid,o<<1);
if(R>mid)
ans+=query(L,R,mid+1,r,o<<1|1);
return ans;
}
void debug(int l,int r,int o){
printf("%lld %lld %lld %lld %lld\n",l,r,o,seg[o],tag[o]);
if(l==r)
return;
int mid=(l+r)>>1;
debug(l,mid,o<<1);
debug(mid+1,r,o<<1|1);
}
};
int gcd(int a,int b){
return (b==0)?a:gcd(b,a%b);
}
int a[MAXN]={0},n,m;
using namespace Seg1;
using namespace Seg2;
using namespace Seg3;
signed main(){
scanf("%lld %lld",&n,&m);
n--;
Seg1::build(1,n,1,a);
Seg2::build(1,n,1,a);
Seg3::build(1,n,1,a);
for(int i=1;i<=m;i++){
char c=getchar();
while(c!='C'&&c!='Q')
c=getchar();
if(c=='C'){
int l,r,val;
scanf("%lld %lld %lld",&l,&r,&val);
r--;
Seg1::add(l,r,1,n,1,val);
Seg2::add(l,r,1,n,1,val);
Seg3::add(l,r,1,n,1,val);
//Seg3::debug(1,n,1);
}
else{
int l,r;
scanf("%lld %lld",&l,&r);
r--;
int sum1=Seg1::query(l,r,1,n,1);
int sum2=Seg2::query(l,r,1,n,1);
int sum3=Seg3::query(l,r,1,n,1);
//Seg3::debug(1,n,1);
int ans=sum1*(r-l+1-r*l)+(r+l)*sum2-sum3;
// printf("sum1=%lld sum2=%lld sum3=%lld %lld\n",sum1,sum2,sum3,ans);
int t=(r-l+1)*(r-l+2)/2;
int Gcd=gcd(t,ans);
printf("%lld/%lld\n",ans/Gcd,t/Gcd);
}
}
return 0;
}
P2221 [HAOI2012]高速公路的更多相关文章
- P2221 [HAOI2012]高速公路(线段树)
P2221 [HAOI2012]高速公路 显然答案为 $\dfrac{\sum_{i=l}^r\sum_{j=l}^{r}dis[i][j]}{C_{r-l+1}^2}$ 下面倒是挺好算,组合数瞎搞 ...
- 洛谷 P2221 [HAOI2012]高速公路
链接: P2221 题意: 有 \(n(1\leq n\leq 10^5)\) 个点,从第 \(i(1\leq i< n)\) 个点向第 \(i+1\) 个点连有边.最初所有边长 \(v_i\) ...
- 洛谷P2221 [HAOI2012]高速公路
线段树 #include<cstdio> #include<cstdlib> #include<algorithm> #include<cstring> ...
- 【题解】Luogu P2221 [HAOI2012]高速公路
原题传送门 这道题还算简单 我们要求的期望值: \[\frac{\sum_{i=l}^r\sum_{j=l}^rdis[i][j]}{C_{r-l+1}^{2}}\] 当然是上下两部分分别求,下面肥肠 ...
- 洛谷P2221 [HAOI2012]高速公路(线段树+概率期望)
传送门 首先,答案等于$$ans=\sum_{i=l}^r\sum_{j=i}^r\frac{sum(i,j)}{C_{r-l+1}^2}$$ 也就是说所有情况的和除以总的情况数 因为这是一条链,我们 ...
- luogu P2221 [HAOI2012]高速公路题解
题面 很套路的拆式子然后线段树上维护区间和的题.一般都是把式子拆成区间内几个形如\(\sum i*a_i, \sum i^2 * a_i\)的式子相加减的形式. 考虑一次询问[l,r]的答案怎么算: ...
- BZOJ2752: [HAOI2012]高速公路(road)
2752: [HAOI2012]高速公路(road) Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 608 Solved: 199[Submit][ ...
- BZOJ 2752: [HAOI2012]高速公路(road)( 线段树 )
对于询问[L, R], 我们直接考虑每个p(L≤p≤R)的贡献,可以得到 然后化简一下得到 这样就可以很方便地用线段树, 维护一个p, p*vp, p*(p+1)*vp就可以了 ----------- ...
- 【线段树】BZOJ2752: [HAOI2012]高速公路(road)
2752: [HAOI2012]高速公路(road) Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 1621 Solved: 627[Submit] ...
随机推荐
- Mysql事务及锁
一.事务(Transaction)及其ACID属性 事务是由一组SQL语句组成的逻辑处理单元,事务具有以下4个属性,通常简称为事务的ACID属性:1.原子性(Atomicity):事务是一个原子操作单 ...
- html5-css渐变色
div{ width: 300px; height: 100px; margin: 50px; padding: 50px; border:5px groove rgba ...
- sitecore系列教程之Sitecore个性化-配置文件,模式和角色
这是利用Sitecore规则引擎实现数字化转换的三部分系列的第二部分.阅读上一篇文章,通过为您的个性化体验定义内容策略来设置基础. Sitecore有一个非常强大的规则引擎,可以帮助推动个性化的用 ...
- 【Hbase学习之三】Hbase Java API
环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk8 hadoop-2.6.5 hbase-0.98.12.1-h ...
- javascript实现异步编程的4种方法
1.回调函数. 2.事件监听 . 思路:采用事件驱动模式.任务的执行不取决于代码的顺序,而取决于某个事件是否发生 3.观察者模式 (发布/订阅模式) 代码如下: jQuery.subscribe ...
- hihoCoder #1037 : 数字三角形 (动态规划)
题目链接:https://hihocoder.com/problemset/problem/1037# 问题描述 小Hi和小Ho在经历了螃蟹先生的任务之后被奖励了一次出国旅游的机会,于是他们来到了大洋 ...
- 实例,C# 导出.dbf格式文件
using System; using System.Collections using System.Configuration; using System.Data; using System. ...
- Inernet TLS协议注册表 开启
IE高级配置中,存在SSL支持协议,例如SSL TLS. 其在注册表的路径为:HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\I ...
- sql语句查询结果排序
order by 是用在where条件之后,用来对查询结果进行排序 order by 字段名 asc/desc asc 表示升序(默认为asc,可以省略) desc表示降序 order b ...
- C++重载>>和<<(输入输出运算符)
在C++中,标准库本身已经对左移运算符<<和右移运算符>>分别进行了重载,使其能够用于不同数据的输入输出,但是输入输出的对象只能是 C++ 内置的数据类型(例如 bool.in ...