1.首先对给的数据进行划分,类型为每个类单独放在一个文件夹中

 import json
 import shutil
 import os
 from glob import glob
 from tqdm import tqdm
 # 此文件的作用是创建每个类的文件夹,以及根据给出来的Json中已经做好的分类,对数据进行对号入座划分。
 # 加载json文件得出一个字典,然后根据Key值来提取每个文件到相应的文件夹中,(注意去除了不合理数据)

 try:
     for i in range(0,59):
         os.mkdir("./data/train/" + str(i))
 except:
     pass

 file_train = json.load(open("./data/temp/labels/AgriculturalDisease_train_annotations.json","r",encoding="utf-8"))
 file_val = json.load(open("./data/temp/labels/AgriculturalDisease_validation_annotations.json","r",encoding="utf-8"))

 file_list = file_train + file_val

 for file in tqdm(file_list):
     filename = file["image_id"]
     origin_path = "./data/temp/images/" + filename
     ids = file["disease_class"]
     if ids ==  44:
         continue
     if ids == 45:
         continue
     if ids > 45:
         ids = ids -2
     save_path = "./data/train/" + str(ids) + "/"
     shutil.copy(origin_path,save_path)

2.获取增强数据集类的定义

1.采用自定义获取增强数据类,此Dataset类中重新定义了对数据进行数据增强的多种方式,不仅限于pytorch中自带的增强方式。

首先附上自定义的数据增强的函数代码:

方式一,以重新定义重载方法类的方式定义多种增强方式,在dataset类中的get_item方法中的compose中加入自定义的方法,即可调用。

 # 数据增强的多种方式,使用自定义的方法。调用只需在dataloader.py文件中的get_item函数中调用类自身参数
 # transforms,transforms中集合了compose,compose中列出详细所使用的增强方式。
 from __future__ import division
 import cv2
 import numpy as np
 from numpy import random
 import math
 from sklearn.utils import shuffle
 # 常用的增强方式几乎都在这里,只需在compose中列出类名即可
 __all__ = ['Compose','RandomHflip', 'RandomUpperCrop', 'Resize', 'UpperCrop', 'RandomBottomCrop',
             "RandomErasing",'BottomCrop', 'Normalize', 'RandomSwapChannels', 'RandomRotate',
             'RandomHShift',"CenterCrop","RandomVflip",'ExpandBorder', 'RandomResizedCrop',
             'RandomDownCrop', 'DownCrop', 'ResizedCrop',"FixRandomRotate"]
     # 组合
     # “随机翻转”,“随机顶部切割”,“调整大小”,“上切割”,“随机底部切割”、
     # “随机擦除”,“底部切割”,“正则化”,“随机交换频道”,“随机旋转”,
     # “随机HShift”,“中央切割”,“随机Vflip”,“扩展边界”,“随机调整切割”,
     # “随机下降”,“下降切割”, “调整切割”,“固定随机化”。

 # 每个增强方式类需要调用普通方法描述如下:
 def rotate_nobound(image, angle, center=None, scale=1.):
     (h, w) = image.shape[:2]

     # if the center is None, initialize it as the center of
     # the image
     if center is None:
         center = (w // 2, h // 2)

     # perform the rotation
     M = cv2.getRotationMatrix2D(center, angle, scale)
     rotated = cv2.warpAffine(image, M, (w, h))

     return rotated

 def scale_down(src_size, size):
     w, h = size
     sw, sh = src_size
     if sh < h:
         w, h = float(w * sh) / h, sh
     if sw < w:
         w, h = sw, float(h * sw) / w
     return int(w), int(h)

 def fixed_crop(src, x0, y0, w, h, size=None):
     out = src[y0:y0 + h, x0:x0 + w]
     if size is not None and (w, h) != size:
         out = cv2.resize(out, (size[0], size[1]), interpolation=cv2.INTER_CUBIC)
     return out

 # 固定随机旋转
 class FixRandomRotate(object):
     def __init__(self, angles=[0,90,180,270], bound=False):
         self.angles = angles
         self.bound = bound

     def __call__(self,img):
         do_rotate = random.randint(0, 4)
         angle=self.angles[do_rotate]
         if self.bound:
             img = rotate_bound(img, angle)
         else:
             img = rotate_nobound(img, angle)
         return img

 def center_crop(src, size):
     h, w = src.shape[0:2]
     new_w, new_h = scale_down((w, h), size)

     x0 = int((w - new_w) / 2)
     y0 = int((h - new_h) / 2)

     out = fixed_crop(src, x0, y0, new_w, new_h, size)
     return out

 def bottom_crop(src, size):
     h, w = src.shape[0:2]
     new_w, new_h = scale_down((w, h), size)

     x0 = int((w - new_w) / 2)
     y0 = int((h - new_h) * 0.75)

     out = fixed_crop(src, x0, y0, new_w, new_h, size)
     return out

 def rotate_bound(image, angle):
     # grab the dimensions of the image and then determine the
     # center
     h, w = image.shape[:2]

     (cX, cY) = (w // 2, h // 2)

     M = cv2.getRotationMatrix2D((cX, cY), angle, 1.0)
     cos = np.abs(M[0, 0])
     sin = np.abs(M[0, 1])

     # compute the new bounding dimensions of the image
     nW = int((h * sin) + (w * cos))
     nH = int((h * cos) + (w * sin))

     # adjust the rotation matrix to take into account translation
     M[0, 2] += (nW / 2) - cX
     M[1, 2] += (nH / 2) - cY

     rotated = cv2.warpAffine(image, M, (nW, nH))

     return rotated

 # 常用增强方式,以类的方式体现:
 # 将多个transform组合起来使用
 crop切割  filp旋转
 class Compose(object):
     def __init__(self, transforms):
         self.transforms = transforms
     def __call__(self, img):
         for t in self.transforms:
             img = t(img)
         return img
 class RandomRotate(object):
     def __init__(self, angles, bound=False):
         self.angles = angles
         self.bound = bound

     def __call__(self,img):
         do_rotate = random.randint(0, 2)
         if do_rotate:
             angle = np.random.uniform(self.angles[0], self.angles[1])
             if self.bound:
                 img = rotate_bound(img, angle)
             else:
                 img = rotate_nobound(img, angle)
         return img
 class RandomBrightness(object):
     def __init__(self, delta=10):
         assert delta >= 0
         assert delta <= 255
         self.delta = delta

     def __call__(self, image):
         if random.randint(2):
             delta = random.uniform(-self.delta, self.delta)
             image = (image + delta).clip(0.0, 255.0)
             # print('RandomBrightness,delta ',delta)
         return image

 class RandomContrast(object):
     def __init__(self, lower=0.9, upper=1.05):
         self.lower = lower
         self.upper = upper
         assert self.upper >= self.lower, "contrast upper must be >= lower."
         assert self.lower >= 0, "contrast lower must be non-negative."

     # expects float image
     def __call__(self, image):
         if random.randint(2):
             alpha = random.uniform(self.lower, self.upper)
             # print('contrast:', alpha)
             image = (image * alpha).clip(0.0,255.0)
         return image

 class RandomSaturation(object):
     def __init__(self, lower=0.8, upper=1.2):
         self.lower = lower
         self.upper = upper
         assert self.upper >= self.lower, "contrast upper must be >= lower."
         assert self.lower >= 0, "contrast lower must be non-negative."

     def __call__(self, image):
         if random.randint(2):
             alpha = random.uniform(self.lower, self.upper)
             image[:, :, 1] *= alpha
             # print('RandomSaturation,alpha',alpha)
         return image

 class RandomHue(object):
     def __init__(self, delta=18.0):
         assert delta >= 0.0 and delta <= 360.0
         self.delta = delta

     def __call__(self, image):
         if random.randint(2):
             alpha = random.uniform(-self.delta, self.delta)
             image[:, :, 0] += alpha
             image[:, :, 0][image[:, :, 0] > 360.0] -= 360.0
             image[:, :, 0][image[:, :, 0] < 0.0] += 360.0
             # print('RandomHue,alpha:', alpha)
         return image

 class ConvertColor(object):
     def __init__(self, current='BGR', transform='HSV'):
         self.transform = transform
         self.current = current

     def __call__(self, image):
         if self.current == 'BGR' and self.transform == 'HSV':
             image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
         elif self.current == 'HSV' and self.transform == 'BGR':
             image = cv2.cvtColor(image, cv2.COLOR_HSV2BGR)
         else:
             raise NotImplementedError
         return image

 class RandomSwapChannels(object):
     def __call__(self, img):
         if np.random.randint(2):
             order = np.random.permutation(3)
             return img[:,:,order]
         return img

 class RandomCrop(object):
     def __init__(self, size):
         self.size = size
     def __call__(self, image):
         h, w, _ = image.shape
         new_w, new_h = scale_down((w, h), self.size)

         if w == new_w:
             x0 = 0
         else:
             x0 = random.randint(0, w - new_w)

         if h == new_h:
             y0 = 0
         else:
             y0 = random.randint(0, h - new_h)

         out = fixed_crop(image, x0, y0, new_w, new_h, self.size)
         return out

 class RandomResizedCrop(object):
     def __init__(self, size,scale=(0.49, 1.0), ratio=(1., 1.)):
         self.size = size
         self.scale = scale
         self.ratio = ratio

     def __call__(self,img):
         if random.random() < 0.2:
             return cv2.resize(img,self.size)
         h, w, _ = img.shape
         area = h * w
         d=1
         for attempt in range(10):
             target_area = random.uniform(self.scale[0], self.scale[1]) * area
             aspect_ratio = random.uniform(self.ratio[0], self.ratio[1])

             new_w = int(round(math.sqrt(target_area * aspect_ratio)))
             new_h = int(round(math.sqrt(target_area / aspect_ratio)))

             if random.random() < 0.5:
                 new_h, new_w = new_w, new_h

             if new_w < w and new_h < h:
                 x0 = random.randint(0, w - new_w)
                 y0 = (random.randint(0, h - new_h))//d
                 out = fixed_crop(img, x0, y0, new_w, new_h, self.size)

                 return out

         # Fallback
         return center_crop(img, self.size)

 class DownCrop():
     def __init__(self, size,  select, scale=(0.36,0.81)):
         self.size = size
         self.scale = scale
         self.select = select

     def __call__(self,img, attr_idx):
         if attr_idx not in self.select:
             return img, attr_idx
         if attr_idx == 0:
             self.scale=(0.64,1.0)
         h, w, _ = img.shape
         area = h * w

         s = (self.scale[0]+self.scale[1])/2.0

         target_area = s * area

         new_w = int(round(math.sqrt(target_area)))
         new_h = int(round(math.sqrt(target_area)))

         if new_w < w and new_h < h:
             dw = w-new_w
             x0 = int(0.5*dw)
             y0 = h-new_h
             out = fixed_crop(img, x0, y0, new_w, new_h, self.size)
             return out, attr_idx

         # Fallback
         return center_crop(img, self.size), attr_idx

 class ResizedCrop(object):
     def __init__(self, size, select,scale=(0.64, 1.0), ratio=(3. / 4., 4. / 3.)):
         self.size = size
         self.scale = scale
         self.ratio = ratio
         self.select = select

     def __call__(self,img, attr_idx):
         if attr_idx not in self.select:
             return img, attr_idx
         h, w, _ = img.shape
         area = h * w
         d=1
         if attr_idx == 2:
             self.scale=(0.36,0.81)
             d=2
         if attr_idx == 0:
             self.scale=(0.81,1.0)

         target_area = (self.scale[0]+self.scale[1])/2.0 * area
         # aspect_ratio = random.uniform(self.ratio[0], self.ratio[1])

         new_w = int(round(math.sqrt(target_area)))
         new_h = int(round(math.sqrt(target_area)))

         # if random.random() < 0.5:
         #     new_h, new_w = new_w, new_h

         if new_w < w and new_h < h:
             x0 =  (w - new_w)//2
             y0 = (h - new_h)//d//2
             out = fixed_crop(img, x0, y0, new_w, new_h, self.size)
             # cv2.imshow('{}_img'.format(idx2attr_map[attr_idx]), img)
             # cv2.imshow('{}_crop'.format(idx2attr_map[attr_idx]), out)
             #
             # cv2.waitKey(0)
             return out, attr_idx

         # Fallback
         return center_crop(img, self.size), attr_idx

 class RandomHflip(object):
     def __call__(self, image):
         if random.randint(2):
             return cv2.flip(image, 1)
         else:
             return image
 class RandomVflip(object):
     def __call__(self, image):
         if random.randint(2):
             return cv2.flip(image, 0)
         else:
             return image

 class Hflip(object):
     def __init__(self,doHflip):
         self.doHflip = doHflip

     def __call__(self, image):
         if self.doHflip:
             return cv2.flip(image, 1)
         else:
             return image

 class CenterCrop(object):
     def __init__(self, size):
         self.size = size

     def __call__(self, image):
         return center_crop(image, self.size)

 class UpperCrop():
     def __init__(self, size, scale=(0.09, 0.64)):
         self.size = size
         self.scale = scale

     def __call__(self,img):
         h, w, _ = img.shape
         area = h * w

         s = (self.scale[0]+self.scale[1])/2.0

         target_area = s * area

         new_w = int(round(math.sqrt(target_area)))
         new_h = int(round(math.sqrt(target_area)))

         if new_w < w and new_h < h:
             dw = w-new_w
             x0 = int(0.5*dw)
             y0 = 0
             out = fixed_crop(img, x0, y0, new_w, new_h, self.size)
             return out

         # Fallback
         return center_crop(img, self.size)

 class RandomUpperCrop(object):
     def __init__(self, size, select, scale=(0.09, 0.64), ratio=(3. / 4., 4. / 3.)):
         self.size = size
         self.scale = scale
         self.ratio = ratio
         self.select = select

     def __call__(self,img, attr_idx):
         if random.random() < 0.2:
             return img, attr_idx
         if attr_idx not in self.select:
             return img, attr_idx

         h, w, _ = img.shape
         area = h * w
         for attempt in range(10):
             s = random.uniform(self.scale[0], self.scale[1])
             d = 0.1 + (0.3 - 0.1) / (self.scale[1] - self.scale[0]) * (s - self.scale[0])
             target_area = s * area
             aspect_ratio = random.uniform(self.ratio[0], self.ratio[1])
             new_w = int(round(math.sqrt(target_area * aspect_ratio)))
             new_h = int(round(math.sqrt(target_area / aspect_ratio)))

             # new_w = int(round(math.sqrt(target_area)))
             # new_h = int(round(math.sqrt(target_area)))

             if new_w < w and new_h < h:
                 dw = w-new_w
                 x0 = random.randint(int((0.5-d)*dw), int((0.5+d)*dw)+1)
                 y0 = (random.randint(0, h - new_h))//10
                 out = fixed_crop(img, x0, y0, new_w, new_h, self.size)
                 return out, attr_idx

         # Fallback
         return center_crop(img, self.size), attr_idx
 class RandomDownCrop(object):
     def __init__(self, size, select, scale=(0.36, 0.81), ratio=(3. / 4., 4. / 3.)):
         self.size = size
         self.scale = scale
         self.ratio = ratio
         self.select = select

     def __call__(self,img, attr_idx):
         if random.random() < 0.2:
             return img, attr_idx
         if attr_idx not in self.select:
             return img, attr_idx
         if attr_idx == 0:
             self.scale=(0.64,1.0)

         h, w, _ = img.shape
         area = h * w
         for attempt in range(10):
             s = random.uniform(self.scale[0], self.scale[1])
             d = 0.1 + (0.3 - 0.1) / (self.scale[1] - self.scale[0]) * (s - self.scale[0])
             target_area = s * area
             aspect_ratio = random.uniform(self.ratio[0], self.ratio[1])
             new_w = int(round(math.sqrt(target_area * aspect_ratio)))
             new_h = int(round(math.sqrt(target_area / aspect_ratio)))
             #
             # new_w = int(round(math.sqrt(target_area)))
             # new_h = int(round(math.sqrt(target_area)))

             if new_w < w and new_h < h:
                 dw = w-new_w
                 x0 = random.randint(int((0.5-d)*dw), int((0.5+d)*dw)+1)
                 y0 = (random.randint((h - new_h)*9//10, h - new_h))
                 out = fixed_crop(img, x0, y0, new_w, new_h, self.size)

                 # cv2.imshow('{}_img'.format(idx2attr_map[attr_idx]), img)
                 # cv2.imshow('{}_crop'.format(idx2attr_map[attr_idx]), out)
                 #
                 # cv2.waitKey(0)

                 return out, attr_idx

         # Fallback
         return center_crop(img, self.size), attr_idx

 class RandomHShift(object):
     def __init__(self, select, scale=(0.0, 0.2)):
         self.scale = scale
         self.select = select

     def __call__(self,img, attr_idx):
         if attr_idx not in self.select:
             return img, attr_idx
         do_shift_crop = random.randint(0, 2)
         if do_shift_crop:
             h, w, _ = img.shape
             min_shift = int(w*self.scale[0])
             max_shift = int(w*self.scale[1])
             shift_idx = random.randint(min_shift, max_shift)
             direction = random.randint(0,2)
             if direction:
                 right_part = img[:, -shift_idx:, :]
                 left_part = img[:, :-shift_idx, :]
             else:
                 left_part = img[:, :shift_idx, :]
                 right_part = img[:, shift_idx:, :]
             img = np.concatenate((right_part, left_part), axis=1)

         # Fallback
         return img, attr_idx

 class RandomBottomCrop(object):
     def __init__(self, size, select, scale=(0.4, 0.8)):
         self.size = size
         self.scale = scale
         self.select = select

     def __call__(self,img, attr_idx):
         if attr_idx not in self.select:
             return img, attr_idx

         h, w, _ = img.shape
         area = h * w
         for attempt in range(10):
             s = random.uniform(self.scale[0], self.scale[1])
             d = 0.25 + (0.45 - 0.25) / (self.scale[1] - self.scale[0]) * (s - self.scale[0])
             target_area = s * area

             new_w = int(round(math.sqrt(target_area)))
             new_h = int(round(math.sqrt(target_area)))

             if new_w < w and new_h < h:
                 dw = w-new_w
                 dh = h - new_h
                 x0 = random.randint(int((0.5-d)*dw), min(int((0.5+d)*dw)+1,dw))
                 y0 = (random.randint(max(0,int(0.8*dh)-1), dh))
                 out = fixed_crop(img, x0, y0, new_w, new_h, self.size)
                 return out, attr_idx

         # Fallback
         return bottom_crop(img, self.size), attr_idx

 class BottomCrop():
     def __init__(self, size,  select, scale=(0.4, 0.8)):
         self.size = size
         self.scale = scale
         self.select = select

     def __call__(self,img, attr_idx):
         if attr_idx not in self.select:
             return img, attr_idx

         h, w, _ = img.shape
         area = h * w

         s = (self.scale[0]+self.scale[1])/3.*2.

         target_area = s * area

         new_w = int(round(math.sqrt(target_area)))
         new_h = int(round(math.sqrt(target_area)))

         if new_w < w and new_h < h:
             dw = w-new_w
             dh = h-new_h
             x0 = int(0.5*dw)
             y0 = int(0.9*dh)
             out = fixed_crop(img, x0, y0, new_w, new_h, self.size)
             return out, attr_idx

         # Fallback
         return bottom_crop(img, self.size), attr_idx

 class Resize(object):
     def __init__(self, size, inter=cv2.INTER_CUBIC):
         self.size = size
         self.inter = inter

     def __call__(self, image):
         return cv2.resize(image, (self.size[0], self.size[0]), interpolation=self.inter)

 class ExpandBorder(object):
     def __init__(self,  mode='constant', value=255, size=(336,336), resize=False):
         self.mode = mode
         self.value = value
         self.resize = resize
         self.size = size

     def __call__(self, image):
         h, w, _ = image.shape
         if h > w:
             pad1 = (h-w)//2
             pad2 = h - w - pad1
             if self.mode == 'constant':
                 image = np.pad(image, ((0, 0), (pad1, pad2), (0, 0)),
                                self.mode, constant_values=self.value)
             else:
                 image = np.pad(image,((0,0), (pad1, pad2),(0,0)), self.mode)
         elif h < w:
             pad1 = (w-h)//2
             pad2 = w-h - pad1
             if self.mode == 'constant':
                 image = np.pad(image, ((pad1, pad2),(0, 0), (0, 0)),
                                self.mode,constant_values=self.value)
             else:
                 image = np.pad(image, ((pad1, pad2), (0, 0), (0, 0)),self.mode)
         if self.resize:
             image = cv2.resize(image, (self.size[0], self.size[0]),interpolation=cv2.INTER_LINEAR)
         return image
 class AstypeToInt():
     def __call__(self, image, attr_idx):
         return image.clip(0,255.0).astype(np.uint8), attr_idx

 class AstypeToFloat():
     def __call__(self, image, attr_idx):
         return image.astype(np.float32), attr_idx

 import matplotlib.pyplot as plt
 class Normalize(object):
     def __init__(self,mean, std):
         '''
         :param mean: RGB order
         :param std:  RGB order
         '''
         self.mean = np.array(mean).reshape(3,1,1)
         self.std = np.array(std).reshape(3,1,1)
     def __call__(self, image):
         '''
         :param image:  (H,W,3)  RGB
         :return:
         '''
         # plt.figure(1)
         # plt.imshow(image)
         # plt.show()
         return (image.transpose((2, 0, 1)) / 255. - self.mean) / self.std

 class RandomErasing(object):
     def __init__(self, select,EPSILON=0.5,sl=0.02, sh=0.09, r1=0.3, mean=[0.485, 0.456, 0.406]):
         self.EPSILON = EPSILON
         self.mean = mean
         self.sl = sl
         self.sh = sh
         self.r1 = r1
         self.select = select

     def __call__(self, img,attr_idx):
         if attr_idx not in self.select:
             return img,attr_idx

         if random.uniform(0, 1) > self.EPSILON:
             return img,attr_idx

         for attempt in range(100):
             area = img.shape[1] * img.shape[2]

             target_area = random.uniform(self.sl, self.sh) * area
             aspect_ratio = random.uniform(self.r1, 1 / self.r1)

             h = int(round(math.sqrt(target_area * aspect_ratio)))
             w = int(round(math.sqrt(target_area / aspect_ratio)))

             if w <= img.shape[2] and h <= img.shape[1]:
                 x1 = random.randint(0, img.shape[1] - h)
                 y1 = random.randint(0, img.shape[2] - w)
                 if img.shape[0] == 3:
                     # img[0, x1:x1+h, y1:y1+w] = random.uniform(0, 1)
                     # img[1, x1:x1+h, y1:y1+w] = random.uniform(0, 1)
                     # img[2, x1:x1+h, y1:y1+w] = random.uniform(0, 1)
                     img[0, x1:x1 + h, y1:y1 + w] = self.mean[0]
                     img[1, x1:x1 + h, y1:y1 + w] = self.mean[1]
                     img[2, x1:x1 + h, y1:y1 + w] = self.mean[2]
                     # img[:, x1:x1+h, y1:y1+w] = torch.from_numpy(np.random.rand(3, h, w))
                 else:
                     img[0, x1:x1 + h, y1:y1 + w] = self.mean[1]
                     # img[0, x1:x1+h, y1:y1+w] = torch.from_numpy(np.random.rand(1, h, w))
                 return img,attr_idx

         return img,attr_idx

 if __name__ == '__main__':
     import matplotlib.pyplot as plt

     class FSAug(object):
         def __init__(self):
             self.augment = Compose([
                 AstypeToFloat(),
                 # RandomHShift(scale=(0.,0.2),select=range(8)),
                 # RandomRotate(angles=(-20., 20.), bound=True),
                 ExpandBorder(select=range(8), mode='symmetric'),# symmetric
                 # Resize(size=(336, 336), select=[ 2, 7]),
                 AstypeToInt()
             ])

         def __call__(self, spct,attr_idx):
             return self.augment(spct,attr_idx)

     trans = FSAug()

     img_path = '/media/gserver/data/FashionAI/round2/train/Images/coat_length_labels/0b6b4a2146fc8616a19fcf2026d61d50.jpg'
     img = cv2.cvtColor(cv2.imread(img_path),cv2.COLOR_BGR2RGB)
     img_trans,_ = trans(img,5)
     # img_trans2,_ = trans(img,6)

     plt.figure()
     plt.subplot(221)
     plt.imshow(img)

     plt.subplot(222)
     plt.imshow(img_trans)

     # plt.subplot(223)
     # plt.imshow(img_trans2)
     # plt.imshow(img_trans2)
     plt.show()

方式二:  用于线下增强数据,采用的方法是

  • 高斯噪声
  • 亮度变化
  • 左右翻转
  • 上下翻转
  • 色彩抖动
  • 对化
  • 锐度变化
  •  from PIL import Image,ImageEnhance,ImageFilter,ImageOps
     import os
     import shutil
     import numpy as np
     import cv2
     import random
     from skimage.util import random_noise
     from skimage import exposure
    
     image_number = 0
    
     raw_path = "./data/train/"
    
     new_path = "./aug/train/"
    
     # 加高斯噪声
     def addNoise(img):
         '''
         注意:输出的像素是[0,1]之间,所以乘以5得到[0,255]之间
         '''
         return random_noise(img, mode='gaussian', seed=13, clip=True)*255
    
     def changeLight(img):
         rate = random.uniform(0.5, 1.5)
         # print(rate)
         img = exposure.adjust_gamma(img, rate) #大于1为调暗,小于1为调亮;1.05
         return img
    
     try:
         for i in range(59):
             os.makedirs(new_path + os.sep + str(i))
         except:
             pass
    
     for raw_dir_name in range(59):
    
         raw_dir_name = str(raw_dir_name)
    
         saved_image_path = new_path + raw_dir_name+"/"
    
         raw_image_path = raw_path + raw_dir_name+"/"
    
         if not os.path.exists(saved_image_path):
    
             os.mkdir(saved_image_path)
    
         raw_image_file_name = os.listdir(raw_image_path)
    
         raw_image_file_path = []
    
         for i in raw_image_file_name:
    
             raw_image_file_path.append(raw_image_path+i)
    
         for x in raw_image_file_path:
    
             img = Image.open(x)
             cv_image = cv2.imread(x)
    
             # 高斯噪声
             gau_image = addNoise(cv_image)
             # 随机改变
             light = changeLight(cv_image)
             light_and_gau = addNoise(light)
    
             cv2.imwrite(saved_image_path + "gau_" + os.path.basename(x),gau_image)
             cv2.imwrite(saved_image_path + "light_" + os.path.basename(x),light)
             cv2.imwrite(saved_image_path + "gau_light" + os.path.basename(x),light_and_gau)
             #img = img.resize((800,600))
    
             #1.翻转 
    
             img_flip_left_right = img.transpose(Image.FLIP_LEFT_RIGHT)
    
             img_flip_top_bottom = img.transpose(Image.FLIP_TOP_BOTTOM)
    
             #2.旋转 
    
             #img_rotate_90 = img.transpose(Image.ROTATE_90)
    
             #img_rotate_180 = img.transpose(Image.ROTATE_180)
    
             #img_rotate_270 = img.transpose(Image.ROTATE_270)
    
             #img_rotate_90_left = img_flip_left_right.transpose(Image.ROTATE_90)
    
             #img_rotate_270_left = img_flip_left_right.transpose(Image.ROTATE_270)
    
             #3.亮度
    
             #enh_bri = ImageEnhance.Brightness(img)
             #brightness = 1.5
             #image_brightened = enh_bri.enhance(brightness)
    
             #4.色彩
    
             #enh_col = ImageEnhance.Color(img)
             #color = 1.5
    
             #image_colored = enh_col.enhance(color)
    
             #5.对比度
    
             enh_con = ImageEnhance.Contrast(img)
    
             contrast = 1.5
    
             image_contrasted = enh_con.enhance(contrast)
    
             #6.锐度
    
             #enh_sha = ImageEnhance.Sharpness(img)
             #sharpness = 3.0
    
             #image_sharped = enh_sha.enhance(sharpness)
    
             #保存 
    
             img.save(saved_image_path + os.path.basename(x))
    
             img_flip_left_right.save(saved_image_path + "left_right_" + os.path.basename(x))
    
             img_flip_top_bottom.save(saved_image_path + "top_bottom_" + os.path.basename(x))
    
             #img_rotate_90.save(saved_image_path + "rotate_90_" + os.path.basename(x))
    
             #img_rotate_180.save(saved_image_path + "rotate_180_" + os.path.basename(x))
    
             #img_rotate_270.save(saved_image_path + "rotate_270_" + os.path.basename(x))
    
             #img_rotate_90_left.save(saved_image_path + "rotate_90_left_" + os.path.basename(x))
    
             #img_rotate_270_left.save(saved_image_path + "rotate_270_left_" + os.path.basename(x))
    
             #image_brightened.save(saved_image_path + "brighted_" + os.path.basename(x))
    
             #image_colored.save(saved_image_path + "colored_" + os.path.basename(x))
    
             image_contrasted.save(saved_image_path + "contrasted_" + os.path.basename(x))
    
             #image_sharped.save(saved_image_path + "sharped_" + os.path.basename(x))
    
             image_number += 1
    
             print("convert pictur" "es :%s size:%s mode:%s" % (image_number, img.size, img.mode))
    

    加载数据的类(自定义继承)

  • 与pytorch中的加载数据类差不多,只是多了自己的某些功能。
  •  from torch.utils.data import Dataset
     from torchvision import transforms as T
     from config import config
     from PIL import Image
     from itertools import chain
     from glob import glob
     from tqdm import tqdm
     import random
     import numpy as np
     import pandas as pd
     import os
     import cv2
     import torch 
    
     #1.set random seed
     random.seed(config.seed)
     np.random.seed(config.seed)
     torch.manual_seed(config.seed)
     torch.cuda.manual_seed_all(config.seed)
    
     #2.define dataset
     class ZiyiDataset(Dataset):
         def __init__(self,label_list,transforms=None,train=True,test=False):
             self.test = test
             self.train = train
             imgs = []
             if self.test:
                 for index,row in label_list.iterrows():
                     imgs.append((row["filename"]))
                 self.imgs = imgs
             else:
                 for index,row in label_list.iterrows():
                     imgs.append((row["filename"],row["label"]))
                 self.imgs = imgs
             if transforms is None:
                 if self.test or not train:
                     self.transforms = T.Compose([
                         T.Resize((config.img_weight,config.img_height)),
                         T.ToTensor(),
                         T.Normalize(mean = [0.485,0.456,0.406],
                                     std = [0.229,0.224,0.225])])
                 else:
                     self.transforms  = T.Compose([
                         T.Resize((config.img_weight,config.img_height)),
                         T.RandomRotation(30),
                         T.RandomHorizontalFlip(),
                         T.RandomVerticalFlip(),
                         T.RandomAffine(45),
                         T.ToTensor(),
                         T.Normalize(mean = [0.485,0.456,0.406],
                                     std = [0.229,0.224,0.225])])
             else:
                 self.transforms = transforms
         def __getitem__(self,index):
             if self.test:
                 filename = self.imgs[index]
                 img = Image.open(filename)
                 img = self.transforms(img)
                 return img,filename
             else:
                 filename,label = self.imgs[index]
                 img = Image.open(filename)
                 img = self.transforms(img)
                 return img,label
         def __len__(self):
             return len(self.imgs)
    
     def collate_fn(batch):
         imgs = []
         label = []
         for sample in batch:
             imgs.append(sample[0])
             label.append(sample[1])
    
         return torch.stack(imgs, 0), \
                label
    
     def get_files(root,mode):
         #for test
         if mode == "test":
             files = []
             for img in os.listdir(root):
                 files.append(root + img)
             files = pd.DataFrame({"filename":files})
             return files
         elif mode != "test":
             #for train and val
             all_data_path,labels = [],[]
             image_folders = list(map(lambda x:root+x,os.listdir(root)))
             jpg_image_1 = list(map(lambda x:glob(x+"/*.jpg"),image_folders))
             jpg_image_2 = list(map(lambda x:glob(x+"/*.JPG"),image_folders))
             all_images = list(chain.from_iterable(jpg_image_1 + jpg_image_2))
             print("loading train dataset")
             for file in tqdm(all_images):
                 all_data_path.append(file)
                 labels.append(int(file.split("/")[-2]))
             all_files = pd.DataFrame({"filename":all_data_path,"label":labels})
             return all_files
         else:
             print("check the mode please!")
         

3.获取模型

获取模型较为简单,单一模型采取pytorch中的预训练模型,添加所需要的层,进行微调然后迁移学习新数据。

 import torchvision
 import torch.nn.functional as F
 from torch import nn
 from config import config

 def generate_model():
     class DenseModel(nn.Module):
         def __init__(self, pretrained_model):
             super(DenseModel, self).__init__()
             self.classifier = nn.Linear(pretrained_model.classifier.in_features, config.num_classes)

             for m in self.modules():
                 if isinstance(m, nn.Conv2d):
                     nn.init.kaiming_normal(m.weight)
                 elif isinstance(m, nn.BatchNorm2d):
                     m.weight.data.fill_(1)
                     m.bias.data.zero_()
                 elif isinstance(m, nn.Linear):
                     m.bias.data.zero_()

             self.features = pretrained_model.features
             self.layer1 = pretrained_model.features._modules['denseblock1']
             self.layer2 = pretrained_model.features._modules['denseblock2']
             self.layer3 = pretrained_model.features._modules['denseblock3']
             self.layer4 = pretrained_model.features._modules['denseblock4']

         def forward(self, x):
             features = self.features(x)
             out = F.relu(features, inplace=True)
             out = F.avg_pool2d(out, kernel_size=8).view(features.size(0), -1)
             out = F.sigmoid(self.classifier(out))
             return out

     return DenseModel(torchvision.models.densenet169(pretrained=True))

 def get_net():
     #return MyModel(torchvision.models.resnet101(pretrained = True))
     model = torchvision.models.resnet50(pretrained = True)
     #for param in model.parameters():
     #    param.requires_grad = False
     # pytorch添加层的方式直接在Model.层名=层具体形式
     model.avgpool = nn.AdaptiveAvgPool2d(1)
     model.fc = nn.Linear(2048,config.num_classes)  #添加全连接层以作分类任务,num_classes为分类个数
     return model

4.开始训练

 import os
 import random
 import time
 import json
 import torch
 import torchvision
 import numpy as np
 import pandas as pd
 import warnings
 from datetime import datetime
 from torch import nn,optim
 from config import config
 from collections import OrderedDict
 from torch.autograd import Variable
 from torch.utils.data import DataLoader
 from dataset.dataloader import *
 from sklearn.model_selection import train_test_split,StratifiedKFold
 from timeit import default_timer as timer
 from models.model import *
 from utils import *

 #1. 设置随机种子 and cudnn performance
 random.seed(config.seed)
 np.random.seed(config.seed)
 torch.manual_seed(config.seed)
 torch.cuda.manual_seed_all(config.seed)
 os.environ["CUDA_VISIBLE_DEVICES"] = config.gpus
 torch.backends.cudnn.benchmark = True
 warnings.filterwarnings('ignore')

 #2. 评估函数,通过Losses,topk的不断更新来评估模型
 def evaluate(val_loader,model,criterion):
     #2.1 AverageMeter类是Computes and stores the average and current value
     # 创建三个其对象,以用于评估
     losses = AverageMeter()
     top1 = AverageMeter()
     top2 = AverageMeter()
     #2.2 开启评估模式 and confirm model has been transfered to cuda
     model.cuda()
     model.eval()
     with torch.no_grad():
         for i,(input,target) in enumerate(val_loader):
             input = Variable(input).cuda()
             target = Variable(torch.from_numpy(np.array(target)).long()).cuda()
             #target = Variable(target).cuda()
             #2.2.1 compute output
             output = model(input)
             loss = criterion(output,target)

             #2.2.2 measure accuracy and record loss
             precision1,precision2 = accuracy(output,target,topk=(1,2))
             losses.update(loss.item(),input.size(0))
             top1.update(precision1[0],input.size(0))
             top2.update(precision2[0],input.size(0))

     return [losses.avg,top1.avg,top2.avg]

 #3. test model on public dataset and save the probability matrix

 def test(test_loader,model,folds):
     #3.1 confirm the model converted to cuda
     # 得出的结果是概率,再用softmax得出最终分类结果
     csv_map = OrderedDict({"filename":[],"probability":[]})
     model.cuda()
     model.eval()
     with open("./submit/baseline.json","w",encoding="utf-8") as f :
         submit_results = []
         for i,(input,filepath) in enumerate(tqdm(test_loader)):
             # filepath??????
             # 通过模型得到输出概率结果,再用softmax得出预测结果,写入文件。
             #3.2 change everything to cuda and get only basename
             filepath = [os.path.basename(x) for x in filepath]
             with torch.no_grad():
                 image_var = Variable(input).cuda()
                 #3.3.output
                 #print(filepath)
                 #print(input,input.shape)
                 y_pred = model(image_var)
                 #print(y_pred.shape)
                 smax = nn.Softmax(1)
                 smax_out = smax(y_pred)
             #3.4 save probability to csv files
             csv_map["filename"].extend(filepath)
             for output in smax_out:
                 prob = ";".join([str(i) for i in output.data.tolist()])
                 csv_map["probability"].append(prob)
         result = pd.DataFrame(csv_map)
         result["probability"] = result["probability"].map(lambda x : [float(i) for i in x.split(";")])
         for index, row in result.iterrows():
             # 因为44,45类删除,所以预测结果加2
             pred_label = np.argmax(row['probability'])
             if pred_label > 43:
                 pred_label = pred_label + 2
             submit_results.append({"image_id":row['filename'],"disease_class":pred_label})
         json.dump(submit_results,f,ensure_ascii=False,cls = MyEncoder)

 #4. more details to build main function
 def main():
     fold = 0
     #4.1 mkdirs
     if not os.path.exists(config.submit):
         os.mkdir(config.submit)
     if not os.path.exists(config.weights):
         os.mkdir(config.weights)
     if not os.path.exists(config.best_models):
         os.mkdir(config.best_models)
     if not os.path.exists(config.logs):
         os.mkdir(config.logs)
     if not os.path.exists(config.weights + config.model_name + os.sep +str(fold) + os.sep):
         os.makedirs(config.weights + config.model_name + os.sep +str(fold) + os.sep)
     if not os.path.exists(config.best_models + config.model_name + os.sep +str(fold) + os.sep):
         os.makedirs(config.best_models + config.model_name + os.sep +str(fold) + os.sep)
     #4.2 get model and optimizer
     model = get_net()
     #model = torch.nn.DataParallel(model)
     model.cuda()
     #optimizer = optim.SGD(model.parameters(),lr = config.lr,momentum=0.9,weight_decay=config.weight_decay)
     optimizer = optim.Adam(model.parameters(),lr = config.lr,amsgrad=True,weight_decay=config.weight_decay)
     criterion = nn.CrossEntropyLoss().cuda()
     #criterion = FocalLoss().cuda()
     log = Logger()
     log.open(config.logs + "log_train.txt",mode="a")
     log.write("\n----------------------------------------------- [START %s] %s\n\n" % (datetime.now().strftime('%Y-%m-%d %H:%M:%S'), '-' * 51))
     #4.3 some parameters for  K-fold and restart model
     start_epoch = 0
     best_precision1 = 0
     best_precision_save = 0
     resume = False

     #4.4 restart the training process
     if resume:
         checkpoint = torch.load(config.best_models + str(fold) + "/model_best.pth.tar")
         start_epoch = checkpoint["epoch"]
         fold = checkpoint["fold"]
         best_precision1 = checkpoint["best_precision1"]
         model.load_state_dict(checkpoint["state_dict"])
         optimizer.load_state_dict(checkpoint["optimizer"])

     #4.5 get files and split for K-fold dataset
     #4.5.1 read files
     train_ = get_files(config.train_data,"train")
     #val_data_list = get_files(config.val_data,"val")
     test_files = get_files(config.test_data,"test")

     """
     #4.5.2 split
     split_fold = StratifiedKFold(n_splits=3)
     folds_indexes = split_fold.split(X=origin_files["filename"],y=origin_files["label"])
     folds_indexes = np.array(list(folds_indexes))
     fold_index = folds_indexes[fold]

     #4.5.3 using fold index to split for train data and val data
     train_data_list = pd.concat([origin_files["filename"][fold_index[0]],origin_files["label"][fold_index[0]]],axis=1)
     val_data_list = pd.concat([origin_files["filename"][fold_index[1]],origin_files["label"][fold_index[1]]],axis=1)
     """
     train_data_list,val_data_list = train_test_split(train_,test_size = 0.15,stratify=train_["label"])
     #4.5.4 load dataset
     train_dataloader = DataLoader(ZiyiDataset(train_data_list),batch_size=config.batch_size,shuffle=True,collate_fn=collate_fn,pin_memory=True)
     val_dataloader = DataLoader(ZiyiDataset(val_data_list,train=False),batch_size=config.batch_size,shuffle=True,collate_fn=collate_fn,pin_memory=False)
     test_dataloader = DataLoader(ZiyiDataset(test_files,test=True),batch_size=1,shuffle=False,pin_memory=False)
     #scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer,"max",verbose=1,patience=3)
     scheduler =  optim.lr_scheduler.StepLR(optimizer,step_size = 10,gamma=0.1)
     # optim.lr_scheduler 提供了基于多种epoch数目调整学习率的方法
     # step_size(整数类型): 调整学习率的步长,每过step_size次,更新一次学习率
     # gamma(float 类型):学习率下降的乘数因子
     #4.5.5.1 define metrics
     train_losses = AverageMeter()
     train_top1 = AverageMeter()
     train_top2 = AverageMeter()
     valid_loss = [np.inf,0,0]
     model.train()
     #logs
     log.write('** start training here! **\n')
     log.write('                           |------------ VALID -------------|----------- TRAIN -------------|------Accuracy------|------------|\n')
     log.write('lr       iter     epoch    | loss   top-1  top-2            | loss   top-1  top-2           |    Current Best    | time       |\n')
     log.write('-------------------------------------------------------------------------------------------------------------------------------\n')
     #4.5.5 train
     start = timer()
     for epoch in range(start_epoch,config.epochs):
         # 一个epoch为所有数据迭代一次进入模型拟合的过程,其中又分为batch_size来分批次进行
         scheduler.step(epoch)
         # train
         #global iter
         for iter,(input,target) in enumerate(train_dataloader):
             #4.5.5 switch to continue train process
             model.train()
             input = Variable(input).cuda()
             target = Variable(torch.from_numpy(np.array(target)).long()).cuda()
             #target = Variable(target).cuda()
             output = model(input)
             loss = criterion(output,target)

             precision1_train,precision2_train = accuracy(output,target,topk=(1,2))
             train_losses.update(loss.item(),input.size(0))
             train_top1.update(precision1_train[0],input.size(0))
             train_top2.update(precision2_train[0],input.size(0))
             #backward
             optimizer.zero_grad()
             loss.backward()
             optimizer.step()
             lr = get_learning_rate(optimizer)
             print('\r',end='',flush=True)
             print('%0.4f %5.1f %6.1f        | %0.3f  %0.3f  %0.3f         | %0.3f  %0.3f  %0.3f         |         %s         | %s' % (\
                          lr, iter/len(train_dataloader) + epoch, epoch,
                          valid_loss[0], valid_loss[1], valid_loss[2],
                          train_losses.avg, train_top1.avg, train_top2.avg,str(best_precision_save),
                          time_to_str((timer() - start),'min'))
             , end='',flush=True)
         #evaluate
         lr = get_learning_rate(optimizer)
         #evaluate every half epoch
         valid_loss = evaluate(val_dataloader,model,criterion)
         is_best = valid_loss[1] > best_precision1
         best_precision1 = max(valid_loss[1],best_precision1)
         try:
             best_precision_save = best_precision1.cpu().data.numpy()
         except:
             pass
         save_checkpoint({
                     "epoch":epoch + 1,
                     "model_name":config.model_name,
                     "state_dict":model.state_dict(),
                     "best_precision1":best_precision1,
                     "optimizer":optimizer.state_dict(),
                     "fold":fold,
                     "valid_loss":valid_loss,
         },is_best,fold)
         #adjust learning rate
         #scheduler.step(valid_loss[1])
         print("\r",end="",flush=True)
         log.write('%0.4f %5.1f %6.1f        | %0.3f  %0.3f  %0.3f          | %0.3f  %0.3f  %0.3f         |         %s         | %s' % (\
                         lr, 0 + epoch, epoch,
                         valid_loss[0], valid_loss[1], valid_loss[2],
                         train_losses.avg,    train_top1.avg,    train_top2.avg, str(best_precision_save),
                         time_to_str((timer() - start),'min'))
                 )
         log.write('\n')
         time.sleep(0.01)
     best_model = torch.load(config.best_models + os.sep+config.model_name+os.sep+ str(fold) +os.sep+ 'model_best.pth.tar')
     model.load_state_dict(best_model["state_dict"])
     test(test_dataloader,model,fold)

 if __name__ =="__main__":
     main()

使用Pytorch进行图像分类,AI challenger 农作物病害分类竞赛源码解读的更多相关文章

  1. [源码解读] ResNet源码解读(pytorch)

    自己看读完pytorch封装的源码后,自己又重新写了一边(模仿其书写格式), 一些问题在代码中说明. import torch import torchvision import argparse i ...

  2. PyTorch源码解读之torchvision.transforms(转)

    原文地址:https://blog.csdn.net/u014380165/article/details/79167753 版权声明:本文为博主原创文章,未经博主允许不得转载. https://bl ...

  3. PyTorch源码解读之torchvision.models(转)

    原文地址:https://blog.csdn.net/u014380165/article/details/79119664 PyTorch框架中有一个非常重要且好用的包:torchvision,该包 ...

  4. PyTorch源码解读之torch.utils.data.DataLoader(转)

    原文链接 https://blog.csdn.net/u014380165/article/details/79058479 写得特别好!最近正好在学习pytorch,学习一下! PyTorch中数据 ...

  5. pytorch bert 源码解读

    https://daiwk.github.io/posts/nlp-bert.html 目录 概述 BERT 模型架构 Input Representation Pre-training Tasks ...

  6. [源码解析] PyTorch 分布式(1) --- 数据加载之DistributedSampler

    [源码解析] PyTorch 分布式(1) --- 数据加载之DistributedSampler 目录 [源码解析] PyTorch 分布式(1) --- 数据加载之DistributedSampl ...

  7. [源码解析] PyTorch 分布式(2) --- 数据加载之DataLoader

    [源码解析] PyTorch 分布式(2) --- 数据加载之DataLoader 目录 [源码解析] PyTorch 分布式(2) --- 数据加载之DataLoader 0x00 摘要 0x01 ...

  8. [源码解析] PyTorch 分布式之弹性训练(1) --- 总体思路

    [源码解析] PyTorch 分布式之弹性训练(1) --- 总体思路 目录 [源码解析] PyTorch 分布式之弹性训练(1) --- 总体思路 0x00 摘要 0x01 痛点 0x02 难点 0 ...

  9. [源码解析] PyTorch 分布式之弹性训练(6)---监控/容错

    [源码解析] PyTorch 分布式之弹性训练(6)---监控/容错 目录 [源码解析] PyTorch 分布式之弹性训练(6)---监控/容错 0x00 摘要 0x01 总体逻辑 1.1 Node集 ...

随机推荐

  1. 运行里用\\加IP地址访问远程主机和用mstsc登录远程主机有什么区别??

    \\ip是访问共享:mstsc是直接远端控制主机 "\\加IP",只要是windows,除win9x外,默认系统自带共享服务,除非有防火墙,或者手工关闭lanmanserver & ...

  2. cc2640 细节展示

    1. 对于 cc2640内部有两个单片机,一个m3负责内核,另一个是一个16位单片机,应该是msp430可以替代主机完成一些数据采集,adc采集,iic等等功能,传感器软件内部可以进行外设配置,并使用 ...

  3. [No0000C7]windows 10桌面切换快捷键,win10

    windows 10桌面切换快捷键:Ctrl+Win+←/→ 切换窗口:Alt+Tab(不是新的,但任务切换界面改进)任务视图:Win+Tab(松开键盘界面不会消失)创建新的虚拟桌面:Win+Ctrl ...

  4. Python:random模块

    近排练习代码时候经常会用到random模块,以防后面忘记还是需要记录一下. 首先导入模块: import random random.random():用于生成一个0到1的随机浮点数: 0 <= ...

  5. 新装的arcgis10.5特别卡

    在之前装过arcgis10.5,用了一段时间感觉还不错.  由于二次开发要用到AO,当时缺少开发包,所以用了10.4.  现在跟师傅合作开发,要跟他保持一致,所以用了arcgis10.5.  但是装的 ...

  6. iOS-原生纯代码约束总结(二)之 AutoLayout

    一,概述 AutoLayout相比AutoResizing更加实用,是可以完全替代AutoResizing的一种自动布局方式.而在使用AutoLayout前,我们必须理解一个属性,那就是transla ...

  7. es定制排序搜索结果

    GET /company/employee/_search { "query": { "constant_score": { "filter" ...

  8. oc培训之变量课后练习

    1.打印常用数据类型长度,打印2.3f,使小数点后面为4位. float i=2.3f; printf("%.4f",i); 2.打印以下图形. int i,j,k,m,n; ;i ...

  9. dedecms自定义表单提交成功后提示信息修改和跳转链接修改

    我们在用dedecms自定义表单提交成功后提示信息一般是"Dedecms 提示信息",这个要怎么改成自己想要的文字呢?还有就是提示页停留时间,目前估计就2秒,太快了,要如何设置长点 ...

  10. centos 安装 pcre

    版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/luozhonghua2014/article/details/37054235 #rpm -qa | ...