使用Pytorch进行图像分类,AI challenger 农作物病害分类竞赛源码解读
1.首先对给的数据进行划分,类型为每个类单独放在一个文件夹中
import json import shutil import os from glob import glob from tqdm import tqdm # 此文件的作用是创建每个类的文件夹,以及根据给出来的Json中已经做好的分类,对数据进行对号入座划分。 # 加载json文件得出一个字典,然后根据Key值来提取每个文件到相应的文件夹中,(注意去除了不合理数据) try: for i in range(0,59): os.mkdir("./data/train/" + str(i)) except: pass file_train = json.load(open("./data/temp/labels/AgriculturalDisease_train_annotations.json","r",encoding="utf-8")) file_val = json.load(open("./data/temp/labels/AgriculturalDisease_validation_annotations.json","r",encoding="utf-8")) file_list = file_train + file_val for file in tqdm(file_list): filename = file["image_id"] origin_path = "./data/temp/images/" + filename ids = file["disease_class"] if ids == 44: continue if ids == 45: continue if ids > 45: ids = ids -2 save_path = "./data/train/" + str(ids) + "/" shutil.copy(origin_path,save_path)
2.获取增强数据集类的定义
1.采用自定义获取增强数据类,此Dataset类中重新定义了对数据进行数据增强的多种方式,不仅限于pytorch中自带的增强方式。
首先附上自定义的数据增强的函数代码:
方式一,以重新定义重载方法类的方式定义多种增强方式,在dataset类中的get_item方法中的compose中加入自定义的方法,即可调用。
# 数据增强的多种方式,使用自定义的方法。调用只需在dataloader.py文件中的get_item函数中调用类自身参数 # transforms,transforms中集合了compose,compose中列出详细所使用的增强方式。 from __future__ import division import cv2 import numpy as np from numpy import random import math from sklearn.utils import shuffle # 常用的增强方式几乎都在这里,只需在compose中列出类名即可 __all__ = ['Compose','RandomHflip', 'RandomUpperCrop', 'Resize', 'UpperCrop', 'RandomBottomCrop', "RandomErasing",'BottomCrop', 'Normalize', 'RandomSwapChannels', 'RandomRotate', 'RandomHShift',"CenterCrop","RandomVflip",'ExpandBorder', 'RandomResizedCrop', 'RandomDownCrop', 'DownCrop', 'ResizedCrop',"FixRandomRotate"] # 组合 # “随机翻转”,“随机顶部切割”,“调整大小”,“上切割”,“随机底部切割”、 # “随机擦除”,“底部切割”,“正则化”,“随机交换频道”,“随机旋转”, # “随机HShift”,“中央切割”,“随机Vflip”,“扩展边界”,“随机调整切割”, # “随机下降”,“下降切割”, “调整切割”,“固定随机化”。 # 每个增强方式类需要调用普通方法描述如下: def rotate_nobound(image, angle, center=None, scale=1.): (h, w) = image.shape[:2] # if the center is None, initialize it as the center of # the image if center is None: center = (w // 2, h // 2) # perform the rotation M = cv2.getRotationMatrix2D(center, angle, scale) rotated = cv2.warpAffine(image, M, (w, h)) return rotated def scale_down(src_size, size): w, h = size sw, sh = src_size if sh < h: w, h = float(w * sh) / h, sh if sw < w: w, h = sw, float(h * sw) / w return int(w), int(h) def fixed_crop(src, x0, y0, w, h, size=None): out = src[y0:y0 + h, x0:x0 + w] if size is not None and (w, h) != size: out = cv2.resize(out, (size[0], size[1]), interpolation=cv2.INTER_CUBIC) return out # 固定随机旋转 class FixRandomRotate(object): def __init__(self, angles=[0,90,180,270], bound=False): self.angles = angles self.bound = bound def __call__(self,img): do_rotate = random.randint(0, 4) angle=self.angles[do_rotate] if self.bound: img = rotate_bound(img, angle) else: img = rotate_nobound(img, angle) return img def center_crop(src, size): h, w = src.shape[0:2] new_w, new_h = scale_down((w, h), size) x0 = int((w - new_w) / 2) y0 = int((h - new_h) / 2) out = fixed_crop(src, x0, y0, new_w, new_h, size) return out def bottom_crop(src, size): h, w = src.shape[0:2] new_w, new_h = scale_down((w, h), size) x0 = int((w - new_w) / 2) y0 = int((h - new_h) * 0.75) out = fixed_crop(src, x0, y0, new_w, new_h, size) return out def rotate_bound(image, angle): # grab the dimensions of the image and then determine the # center h, w = image.shape[:2] (cX, cY) = (w // 2, h // 2) M = cv2.getRotationMatrix2D((cX, cY), angle, 1.0) cos = np.abs(M[0, 0]) sin = np.abs(M[0, 1]) # compute the new bounding dimensions of the image nW = int((h * sin) + (w * cos)) nH = int((h * cos) + (w * sin)) # adjust the rotation matrix to take into account translation M[0, 2] += (nW / 2) - cX M[1, 2] += (nH / 2) - cY rotated = cv2.warpAffine(image, M, (nW, nH)) return rotated # 常用增强方式,以类的方式体现: # 将多个transform组合起来使用 crop切割 filp旋转 class Compose(object): def __init__(self, transforms): self.transforms = transforms def __call__(self, img): for t in self.transforms: img = t(img) return img class RandomRotate(object): def __init__(self, angles, bound=False): self.angles = angles self.bound = bound def __call__(self,img): do_rotate = random.randint(0, 2) if do_rotate: angle = np.random.uniform(self.angles[0], self.angles[1]) if self.bound: img = rotate_bound(img, angle) else: img = rotate_nobound(img, angle) return img class RandomBrightness(object): def __init__(self, delta=10): assert delta >= 0 assert delta <= 255 self.delta = delta def __call__(self, image): if random.randint(2): delta = random.uniform(-self.delta, self.delta) image = (image + delta).clip(0.0, 255.0) # print('RandomBrightness,delta ',delta) return image class RandomContrast(object): def __init__(self, lower=0.9, upper=1.05): self.lower = lower self.upper = upper assert self.upper >= self.lower, "contrast upper must be >= lower." assert self.lower >= 0, "contrast lower must be non-negative." # expects float image def __call__(self, image): if random.randint(2): alpha = random.uniform(self.lower, self.upper) # print('contrast:', alpha) image = (image * alpha).clip(0.0,255.0) return image class RandomSaturation(object): def __init__(self, lower=0.8, upper=1.2): self.lower = lower self.upper = upper assert self.upper >= self.lower, "contrast upper must be >= lower." assert self.lower >= 0, "contrast lower must be non-negative." def __call__(self, image): if random.randint(2): alpha = random.uniform(self.lower, self.upper) image[:, :, 1] *= alpha # print('RandomSaturation,alpha',alpha) return image class RandomHue(object): def __init__(self, delta=18.0): assert delta >= 0.0 and delta <= 360.0 self.delta = delta def __call__(self, image): if random.randint(2): alpha = random.uniform(-self.delta, self.delta) image[:, :, 0] += alpha image[:, :, 0][image[:, :, 0] > 360.0] -= 360.0 image[:, :, 0][image[:, :, 0] < 0.0] += 360.0 # print('RandomHue,alpha:', alpha) return image class ConvertColor(object): def __init__(self, current='BGR', transform='HSV'): self.transform = transform self.current = current def __call__(self, image): if self.current == 'BGR' and self.transform == 'HSV': image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) elif self.current == 'HSV' and self.transform == 'BGR': image = cv2.cvtColor(image, cv2.COLOR_HSV2BGR) else: raise NotImplementedError return image class RandomSwapChannels(object): def __call__(self, img): if np.random.randint(2): order = np.random.permutation(3) return img[:,:,order] return img class RandomCrop(object): def __init__(self, size): self.size = size def __call__(self, image): h, w, _ = image.shape new_w, new_h = scale_down((w, h), self.size) if w == new_w: x0 = 0 else: x0 = random.randint(0, w - new_w) if h == new_h: y0 = 0 else: y0 = random.randint(0, h - new_h) out = fixed_crop(image, x0, y0, new_w, new_h, self.size) return out class RandomResizedCrop(object): def __init__(self, size,scale=(0.49, 1.0), ratio=(1., 1.)): self.size = size self.scale = scale self.ratio = ratio def __call__(self,img): if random.random() < 0.2: return cv2.resize(img,self.size) h, w, _ = img.shape area = h * w d=1 for attempt in range(10): target_area = random.uniform(self.scale[0], self.scale[1]) * area aspect_ratio = random.uniform(self.ratio[0], self.ratio[1]) new_w = int(round(math.sqrt(target_area * aspect_ratio))) new_h = int(round(math.sqrt(target_area / aspect_ratio))) if random.random() < 0.5: new_h, new_w = new_w, new_h if new_w < w and new_h < h: x0 = random.randint(0, w - new_w) y0 = (random.randint(0, h - new_h))//d out = fixed_crop(img, x0, y0, new_w, new_h, self.size) return out # Fallback return center_crop(img, self.size) class DownCrop(): def __init__(self, size, select, scale=(0.36,0.81)): self.size = size self.scale = scale self.select = select def __call__(self,img, attr_idx): if attr_idx not in self.select: return img, attr_idx if attr_idx == 0: self.scale=(0.64,1.0) h, w, _ = img.shape area = h * w s = (self.scale[0]+self.scale[1])/2.0 target_area = s * area new_w = int(round(math.sqrt(target_area))) new_h = int(round(math.sqrt(target_area))) if new_w < w and new_h < h: dw = w-new_w x0 = int(0.5*dw) y0 = h-new_h out = fixed_crop(img, x0, y0, new_w, new_h, self.size) return out, attr_idx # Fallback return center_crop(img, self.size), attr_idx class ResizedCrop(object): def __init__(self, size, select,scale=(0.64, 1.0), ratio=(3. / 4., 4. / 3.)): self.size = size self.scale = scale self.ratio = ratio self.select = select def __call__(self,img, attr_idx): if attr_idx not in self.select: return img, attr_idx h, w, _ = img.shape area = h * w d=1 if attr_idx == 2: self.scale=(0.36,0.81) d=2 if attr_idx == 0: self.scale=(0.81,1.0) target_area = (self.scale[0]+self.scale[1])/2.0 * area # aspect_ratio = random.uniform(self.ratio[0], self.ratio[1]) new_w = int(round(math.sqrt(target_area))) new_h = int(round(math.sqrt(target_area))) # if random.random() < 0.5: # new_h, new_w = new_w, new_h if new_w < w and new_h < h: x0 = (w - new_w)//2 y0 = (h - new_h)//d//2 out = fixed_crop(img, x0, y0, new_w, new_h, self.size) # cv2.imshow('{}_img'.format(idx2attr_map[attr_idx]), img) # cv2.imshow('{}_crop'.format(idx2attr_map[attr_idx]), out) # # cv2.waitKey(0) return out, attr_idx # Fallback return center_crop(img, self.size), attr_idx class RandomHflip(object): def __call__(self, image): if random.randint(2): return cv2.flip(image, 1) else: return image class RandomVflip(object): def __call__(self, image): if random.randint(2): return cv2.flip(image, 0) else: return image class Hflip(object): def __init__(self,doHflip): self.doHflip = doHflip def __call__(self, image): if self.doHflip: return cv2.flip(image, 1) else: return image class CenterCrop(object): def __init__(self, size): self.size = size def __call__(self, image): return center_crop(image, self.size) class UpperCrop(): def __init__(self, size, scale=(0.09, 0.64)): self.size = size self.scale = scale def __call__(self,img): h, w, _ = img.shape area = h * w s = (self.scale[0]+self.scale[1])/2.0 target_area = s * area new_w = int(round(math.sqrt(target_area))) new_h = int(round(math.sqrt(target_area))) if new_w < w and new_h < h: dw = w-new_w x0 = int(0.5*dw) y0 = 0 out = fixed_crop(img, x0, y0, new_w, new_h, self.size) return out # Fallback return center_crop(img, self.size) class RandomUpperCrop(object): def __init__(self, size, select, scale=(0.09, 0.64), ratio=(3. / 4., 4. / 3.)): self.size = size self.scale = scale self.ratio = ratio self.select = select def __call__(self,img, attr_idx): if random.random() < 0.2: return img, attr_idx if attr_idx not in self.select: return img, attr_idx h, w, _ = img.shape area = h * w for attempt in range(10): s = random.uniform(self.scale[0], self.scale[1]) d = 0.1 + (0.3 - 0.1) / (self.scale[1] - self.scale[0]) * (s - self.scale[0]) target_area = s * area aspect_ratio = random.uniform(self.ratio[0], self.ratio[1]) new_w = int(round(math.sqrt(target_area * aspect_ratio))) new_h = int(round(math.sqrt(target_area / aspect_ratio))) # new_w = int(round(math.sqrt(target_area))) # new_h = int(round(math.sqrt(target_area))) if new_w < w and new_h < h: dw = w-new_w x0 = random.randint(int((0.5-d)*dw), int((0.5+d)*dw)+1) y0 = (random.randint(0, h - new_h))//10 out = fixed_crop(img, x0, y0, new_w, new_h, self.size) return out, attr_idx # Fallback return center_crop(img, self.size), attr_idx class RandomDownCrop(object): def __init__(self, size, select, scale=(0.36, 0.81), ratio=(3. / 4., 4. / 3.)): self.size = size self.scale = scale self.ratio = ratio self.select = select def __call__(self,img, attr_idx): if random.random() < 0.2: return img, attr_idx if attr_idx not in self.select: return img, attr_idx if attr_idx == 0: self.scale=(0.64,1.0) h, w, _ = img.shape area = h * w for attempt in range(10): s = random.uniform(self.scale[0], self.scale[1]) d = 0.1 + (0.3 - 0.1) / (self.scale[1] - self.scale[0]) * (s - self.scale[0]) target_area = s * area aspect_ratio = random.uniform(self.ratio[0], self.ratio[1]) new_w = int(round(math.sqrt(target_area * aspect_ratio))) new_h = int(round(math.sqrt(target_area / aspect_ratio))) # # new_w = int(round(math.sqrt(target_area))) # new_h = int(round(math.sqrt(target_area))) if new_w < w and new_h < h: dw = w-new_w x0 = random.randint(int((0.5-d)*dw), int((0.5+d)*dw)+1) y0 = (random.randint((h - new_h)*9//10, h - new_h)) out = fixed_crop(img, x0, y0, new_w, new_h, self.size) # cv2.imshow('{}_img'.format(idx2attr_map[attr_idx]), img) # cv2.imshow('{}_crop'.format(idx2attr_map[attr_idx]), out) # # cv2.waitKey(0) return out, attr_idx # Fallback return center_crop(img, self.size), attr_idx class RandomHShift(object): def __init__(self, select, scale=(0.0, 0.2)): self.scale = scale self.select = select def __call__(self,img, attr_idx): if attr_idx not in self.select: return img, attr_idx do_shift_crop = random.randint(0, 2) if do_shift_crop: h, w, _ = img.shape min_shift = int(w*self.scale[0]) max_shift = int(w*self.scale[1]) shift_idx = random.randint(min_shift, max_shift) direction = random.randint(0,2) if direction: right_part = img[:, -shift_idx:, :] left_part = img[:, :-shift_idx, :] else: left_part = img[:, :shift_idx, :] right_part = img[:, shift_idx:, :] img = np.concatenate((right_part, left_part), axis=1) # Fallback return img, attr_idx class RandomBottomCrop(object): def __init__(self, size, select, scale=(0.4, 0.8)): self.size = size self.scale = scale self.select = select def __call__(self,img, attr_idx): if attr_idx not in self.select: return img, attr_idx h, w, _ = img.shape area = h * w for attempt in range(10): s = random.uniform(self.scale[0], self.scale[1]) d = 0.25 + (0.45 - 0.25) / (self.scale[1] - self.scale[0]) * (s - self.scale[0]) target_area = s * area new_w = int(round(math.sqrt(target_area))) new_h = int(round(math.sqrt(target_area))) if new_w < w and new_h < h: dw = w-new_w dh = h - new_h x0 = random.randint(int((0.5-d)*dw), min(int((0.5+d)*dw)+1,dw)) y0 = (random.randint(max(0,int(0.8*dh)-1), dh)) out = fixed_crop(img, x0, y0, new_w, new_h, self.size) return out, attr_idx # Fallback return bottom_crop(img, self.size), attr_idx class BottomCrop(): def __init__(self, size, select, scale=(0.4, 0.8)): self.size = size self.scale = scale self.select = select def __call__(self,img, attr_idx): if attr_idx not in self.select: return img, attr_idx h, w, _ = img.shape area = h * w s = (self.scale[0]+self.scale[1])/3.*2. target_area = s * area new_w = int(round(math.sqrt(target_area))) new_h = int(round(math.sqrt(target_area))) if new_w < w and new_h < h: dw = w-new_w dh = h-new_h x0 = int(0.5*dw) y0 = int(0.9*dh) out = fixed_crop(img, x0, y0, new_w, new_h, self.size) return out, attr_idx # Fallback return bottom_crop(img, self.size), attr_idx class Resize(object): def __init__(self, size, inter=cv2.INTER_CUBIC): self.size = size self.inter = inter def __call__(self, image): return cv2.resize(image, (self.size[0], self.size[0]), interpolation=self.inter) class ExpandBorder(object): def __init__(self, mode='constant', value=255, size=(336,336), resize=False): self.mode = mode self.value = value self.resize = resize self.size = size def __call__(self, image): h, w, _ = image.shape if h > w: pad1 = (h-w)//2 pad2 = h - w - pad1 if self.mode == 'constant': image = np.pad(image, ((0, 0), (pad1, pad2), (0, 0)), self.mode, constant_values=self.value) else: image = np.pad(image,((0,0), (pad1, pad2),(0,0)), self.mode) elif h < w: pad1 = (w-h)//2 pad2 = w-h - pad1 if self.mode == 'constant': image = np.pad(image, ((pad1, pad2),(0, 0), (0, 0)), self.mode,constant_values=self.value) else: image = np.pad(image, ((pad1, pad2), (0, 0), (0, 0)),self.mode) if self.resize: image = cv2.resize(image, (self.size[0], self.size[0]),interpolation=cv2.INTER_LINEAR) return image class AstypeToInt(): def __call__(self, image, attr_idx): return image.clip(0,255.0).astype(np.uint8), attr_idx class AstypeToFloat(): def __call__(self, image, attr_idx): return image.astype(np.float32), attr_idx import matplotlib.pyplot as plt class Normalize(object): def __init__(self,mean, std): ''' :param mean: RGB order :param std: RGB order ''' self.mean = np.array(mean).reshape(3,1,1) self.std = np.array(std).reshape(3,1,1) def __call__(self, image): ''' :param image: (H,W,3) RGB :return: ''' # plt.figure(1) # plt.imshow(image) # plt.show() return (image.transpose((2, 0, 1)) / 255. - self.mean) / self.std class RandomErasing(object): def __init__(self, select,EPSILON=0.5,sl=0.02, sh=0.09, r1=0.3, mean=[0.485, 0.456, 0.406]): self.EPSILON = EPSILON self.mean = mean self.sl = sl self.sh = sh self.r1 = r1 self.select = select def __call__(self, img,attr_idx): if attr_idx not in self.select: return img,attr_idx if random.uniform(0, 1) > self.EPSILON: return img,attr_idx for attempt in range(100): area = img.shape[1] * img.shape[2] target_area = random.uniform(self.sl, self.sh) * area aspect_ratio = random.uniform(self.r1, 1 / self.r1) h = int(round(math.sqrt(target_area * aspect_ratio))) w = int(round(math.sqrt(target_area / aspect_ratio))) if w <= img.shape[2] and h <= img.shape[1]: x1 = random.randint(0, img.shape[1] - h) y1 = random.randint(0, img.shape[2] - w) if img.shape[0] == 3: # img[0, x1:x1+h, y1:y1+w] = random.uniform(0, 1) # img[1, x1:x1+h, y1:y1+w] = random.uniform(0, 1) # img[2, x1:x1+h, y1:y1+w] = random.uniform(0, 1) img[0, x1:x1 + h, y1:y1 + w] = self.mean[0] img[1, x1:x1 + h, y1:y1 + w] = self.mean[1] img[2, x1:x1 + h, y1:y1 + w] = self.mean[2] # img[:, x1:x1+h, y1:y1+w] = torch.from_numpy(np.random.rand(3, h, w)) else: img[0, x1:x1 + h, y1:y1 + w] = self.mean[1] # img[0, x1:x1+h, y1:y1+w] = torch.from_numpy(np.random.rand(1, h, w)) return img,attr_idx return img,attr_idx if __name__ == '__main__': import matplotlib.pyplot as plt class FSAug(object): def __init__(self): self.augment = Compose([ AstypeToFloat(), # RandomHShift(scale=(0.,0.2),select=range(8)), # RandomRotate(angles=(-20., 20.), bound=True), ExpandBorder(select=range(8), mode='symmetric'),# symmetric # Resize(size=(336, 336), select=[ 2, 7]), AstypeToInt() ]) def __call__(self, spct,attr_idx): return self.augment(spct,attr_idx) trans = FSAug() img_path = '/media/gserver/data/FashionAI/round2/train/Images/coat_length_labels/0b6b4a2146fc8616a19fcf2026d61d50.jpg' img = cv2.cvtColor(cv2.imread(img_path),cv2.COLOR_BGR2RGB) img_trans,_ = trans(img,5) # img_trans2,_ = trans(img,6) plt.figure() plt.subplot(221) plt.imshow(img) plt.subplot(222) plt.imshow(img_trans) # plt.subplot(223) # plt.imshow(img_trans2) # plt.imshow(img_trans2) plt.show()
方式二: 用于线下增强数据,采用的方法是
- 高斯噪声
- 亮度变化
- 左右翻转
- 上下翻转
- 色彩抖动
- 对化
- 锐度变化
from PIL import Image,ImageEnhance,ImageFilter,ImageOps import os import shutil import numpy as np import cv2 import random from skimage.util import random_noise from skimage import exposure image_number = 0 raw_path = "./data/train/" new_path = "./aug/train/" # 加高斯噪声 def addNoise(img): ''' 注意:输出的像素是[0,1]之间,所以乘以5得到[0,255]之间 ''' return random_noise(img, mode='gaussian', seed=13, clip=True)*255 def changeLight(img): rate = random.uniform(0.5, 1.5) # print(rate) img = exposure.adjust_gamma(img, rate) #大于1为调暗,小于1为调亮;1.05 return img try: for i in range(59): os.makedirs(new_path + os.sep + str(i)) except: pass for raw_dir_name in range(59): raw_dir_name = str(raw_dir_name) saved_image_path = new_path + raw_dir_name+"/" raw_image_path = raw_path + raw_dir_name+"/" if not os.path.exists(saved_image_path): os.mkdir(saved_image_path) raw_image_file_name = os.listdir(raw_image_path) raw_image_file_path = [] for i in raw_image_file_name: raw_image_file_path.append(raw_image_path+i) for x in raw_image_file_path: img = Image.open(x) cv_image = cv2.imread(x) # 高斯噪声 gau_image = addNoise(cv_image) # 随机改变 light = changeLight(cv_image) light_and_gau = addNoise(light) cv2.imwrite(saved_image_path + "gau_" + os.path.basename(x),gau_image) cv2.imwrite(saved_image_path + "light_" + os.path.basename(x),light) cv2.imwrite(saved_image_path + "gau_light" + os.path.basename(x),light_and_gau) #img = img.resize((800,600)) #1.翻转 img_flip_left_right = img.transpose(Image.FLIP_LEFT_RIGHT) img_flip_top_bottom = img.transpose(Image.FLIP_TOP_BOTTOM) #2.旋转 #img_rotate_90 = img.transpose(Image.ROTATE_90) #img_rotate_180 = img.transpose(Image.ROTATE_180) #img_rotate_270 = img.transpose(Image.ROTATE_270) #img_rotate_90_left = img_flip_left_right.transpose(Image.ROTATE_90) #img_rotate_270_left = img_flip_left_right.transpose(Image.ROTATE_270) #3.亮度 #enh_bri = ImageEnhance.Brightness(img) #brightness = 1.5 #image_brightened = enh_bri.enhance(brightness) #4.色彩 #enh_col = ImageEnhance.Color(img) #color = 1.5 #image_colored = enh_col.enhance(color) #5.对比度 enh_con = ImageEnhance.Contrast(img) contrast = 1.5 image_contrasted = enh_con.enhance(contrast) #6.锐度 #enh_sha = ImageEnhance.Sharpness(img) #sharpness = 3.0 #image_sharped = enh_sha.enhance(sharpness) #保存 img.save(saved_image_path + os.path.basename(x)) img_flip_left_right.save(saved_image_path + "left_right_" + os.path.basename(x)) img_flip_top_bottom.save(saved_image_path + "top_bottom_" + os.path.basename(x)) #img_rotate_90.save(saved_image_path + "rotate_90_" + os.path.basename(x)) #img_rotate_180.save(saved_image_path + "rotate_180_" + os.path.basename(x)) #img_rotate_270.save(saved_image_path + "rotate_270_" + os.path.basename(x)) #img_rotate_90_left.save(saved_image_path + "rotate_90_left_" + os.path.basename(x)) #img_rotate_270_left.save(saved_image_path + "rotate_270_left_" + os.path.basename(x)) #image_brightened.save(saved_image_path + "brighted_" + os.path.basename(x)) #image_colored.save(saved_image_path + "colored_" + os.path.basename(x)) image_contrasted.save(saved_image_path + "contrasted_" + os.path.basename(x)) #image_sharped.save(saved_image_path + "sharped_" + os.path.basename(x)) image_number += 1 print("convert pictur" "es :%s size:%s mode:%s" % (image_number, img.size, img.mode))
加载数据的类(自定义继承)
- 与pytorch中的加载数据类差不多,只是多了自己的某些功能。
from torch.utils.data import Dataset from torchvision import transforms as T from config import config from PIL import Image from itertools import chain from glob import glob from tqdm import tqdm import random import numpy as np import pandas as pd import os import cv2 import torch #1.set random seed random.seed(config.seed) np.random.seed(config.seed) torch.manual_seed(config.seed) torch.cuda.manual_seed_all(config.seed) #2.define dataset class ZiyiDataset(Dataset): def __init__(self,label_list,transforms=None,train=True,test=False): self.test = test self.train = train imgs = [] if self.test: for index,row in label_list.iterrows(): imgs.append((row["filename"])) self.imgs = imgs else: for index,row in label_list.iterrows(): imgs.append((row["filename"],row["label"])) self.imgs = imgs if transforms is None: if self.test or not train: self.transforms = T.Compose([ T.Resize((config.img_weight,config.img_height)), T.ToTensor(), T.Normalize(mean = [0.485,0.456,0.406], std = [0.229,0.224,0.225])]) else: self.transforms = T.Compose([ T.Resize((config.img_weight,config.img_height)), T.RandomRotation(30), T.RandomHorizontalFlip(), T.RandomVerticalFlip(), T.RandomAffine(45), T.ToTensor(), T.Normalize(mean = [0.485,0.456,0.406], std = [0.229,0.224,0.225])]) else: self.transforms = transforms def __getitem__(self,index): if self.test: filename = self.imgs[index] img = Image.open(filename) img = self.transforms(img) return img,filename else: filename,label = self.imgs[index] img = Image.open(filename) img = self.transforms(img) return img,label def __len__(self): return len(self.imgs) def collate_fn(batch): imgs = [] label = [] for sample in batch: imgs.append(sample[0]) label.append(sample[1]) return torch.stack(imgs, 0), \ label def get_files(root,mode): #for test if mode == "test": files = [] for img in os.listdir(root): files.append(root + img) files = pd.DataFrame({"filename":files}) return files elif mode != "test": #for train and val all_data_path,labels = [],[] image_folders = list(map(lambda x:root+x,os.listdir(root))) jpg_image_1 = list(map(lambda x:glob(x+"/*.jpg"),image_folders)) jpg_image_2 = list(map(lambda x:glob(x+"/*.JPG"),image_folders)) all_images = list(chain.from_iterable(jpg_image_1 + jpg_image_2)) print("loading train dataset") for file in tqdm(all_images): all_data_path.append(file) labels.append(int(file.split("/")[-2])) all_files = pd.DataFrame({"filename":all_data_path,"label":labels}) return all_files else: print("check the mode please!")
3.获取模型
获取模型较为简单,单一模型采取pytorch中的预训练模型,添加所需要的层,进行微调然后迁移学习新数据。
import torchvision import torch.nn.functional as F from torch import nn from config import config def generate_model(): class DenseModel(nn.Module): def __init__(self, pretrained_model): super(DenseModel, self).__init__() self.classifier = nn.Linear(pretrained_model.classifier.in_features, config.num_classes) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal(m.weight) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() elif isinstance(m, nn.Linear): m.bias.data.zero_() self.features = pretrained_model.features self.layer1 = pretrained_model.features._modules['denseblock1'] self.layer2 = pretrained_model.features._modules['denseblock2'] self.layer3 = pretrained_model.features._modules['denseblock3'] self.layer4 = pretrained_model.features._modules['denseblock4'] def forward(self, x): features = self.features(x) out = F.relu(features, inplace=True) out = F.avg_pool2d(out, kernel_size=8).view(features.size(0), -1) out = F.sigmoid(self.classifier(out)) return out return DenseModel(torchvision.models.densenet169(pretrained=True)) def get_net(): #return MyModel(torchvision.models.resnet101(pretrained = True)) model = torchvision.models.resnet50(pretrained = True) #for param in model.parameters(): # param.requires_grad = False # pytorch添加层的方式直接在Model.层名=层具体形式 model.avgpool = nn.AdaptiveAvgPool2d(1) model.fc = nn.Linear(2048,config.num_classes) #添加全连接层以作分类任务,num_classes为分类个数 return model
4.开始训练
import os import random import time import json import torch import torchvision import numpy as np import pandas as pd import warnings from datetime import datetime from torch import nn,optim from config import config from collections import OrderedDict from torch.autograd import Variable from torch.utils.data import DataLoader from dataset.dataloader import * from sklearn.model_selection import train_test_split,StratifiedKFold from timeit import default_timer as timer from models.model import * from utils import * #1. 设置随机种子 and cudnn performance random.seed(config.seed) np.random.seed(config.seed) torch.manual_seed(config.seed) torch.cuda.manual_seed_all(config.seed) os.environ["CUDA_VISIBLE_DEVICES"] = config.gpus torch.backends.cudnn.benchmark = True warnings.filterwarnings('ignore') #2. 评估函数,通过Losses,topk的不断更新来评估模型 def evaluate(val_loader,model,criterion): #2.1 AverageMeter类是Computes and stores the average and current value # 创建三个其对象,以用于评估 losses = AverageMeter() top1 = AverageMeter() top2 = AverageMeter() #2.2 开启评估模式 and confirm model has been transfered to cuda model.cuda() model.eval() with torch.no_grad(): for i,(input,target) in enumerate(val_loader): input = Variable(input).cuda() target = Variable(torch.from_numpy(np.array(target)).long()).cuda() #target = Variable(target).cuda() #2.2.1 compute output output = model(input) loss = criterion(output,target) #2.2.2 measure accuracy and record loss precision1,precision2 = accuracy(output,target,topk=(1,2)) losses.update(loss.item(),input.size(0)) top1.update(precision1[0],input.size(0)) top2.update(precision2[0],input.size(0)) return [losses.avg,top1.avg,top2.avg] #3. test model on public dataset and save the probability matrix def test(test_loader,model,folds): #3.1 confirm the model converted to cuda # 得出的结果是概率,再用softmax得出最终分类结果 csv_map = OrderedDict({"filename":[],"probability":[]}) model.cuda() model.eval() with open("./submit/baseline.json","w",encoding="utf-8") as f : submit_results = [] for i,(input,filepath) in enumerate(tqdm(test_loader)): # filepath?????? # 通过模型得到输出概率结果,再用softmax得出预测结果,写入文件。 #3.2 change everything to cuda and get only basename filepath = [os.path.basename(x) for x in filepath] with torch.no_grad(): image_var = Variable(input).cuda() #3.3.output #print(filepath) #print(input,input.shape) y_pred = model(image_var) #print(y_pred.shape) smax = nn.Softmax(1) smax_out = smax(y_pred) #3.4 save probability to csv files csv_map["filename"].extend(filepath) for output in smax_out: prob = ";".join([str(i) for i in output.data.tolist()]) csv_map["probability"].append(prob) result = pd.DataFrame(csv_map) result["probability"] = result["probability"].map(lambda x : [float(i) for i in x.split(";")]) for index, row in result.iterrows(): # 因为44,45类删除,所以预测结果加2 pred_label = np.argmax(row['probability']) if pred_label > 43: pred_label = pred_label + 2 submit_results.append({"image_id":row['filename'],"disease_class":pred_label}) json.dump(submit_results,f,ensure_ascii=False,cls = MyEncoder) #4. more details to build main function def main(): fold = 0 #4.1 mkdirs if not os.path.exists(config.submit): os.mkdir(config.submit) if not os.path.exists(config.weights): os.mkdir(config.weights) if not os.path.exists(config.best_models): os.mkdir(config.best_models) if not os.path.exists(config.logs): os.mkdir(config.logs) if not os.path.exists(config.weights + config.model_name + os.sep +str(fold) + os.sep): os.makedirs(config.weights + config.model_name + os.sep +str(fold) + os.sep) if not os.path.exists(config.best_models + config.model_name + os.sep +str(fold) + os.sep): os.makedirs(config.best_models + config.model_name + os.sep +str(fold) + os.sep) #4.2 get model and optimizer model = get_net() #model = torch.nn.DataParallel(model) model.cuda() #optimizer = optim.SGD(model.parameters(),lr = config.lr,momentum=0.9,weight_decay=config.weight_decay) optimizer = optim.Adam(model.parameters(),lr = config.lr,amsgrad=True,weight_decay=config.weight_decay) criterion = nn.CrossEntropyLoss().cuda() #criterion = FocalLoss().cuda() log = Logger() log.open(config.logs + "log_train.txt",mode="a") log.write("\n----------------------------------------------- [START %s] %s\n\n" % (datetime.now().strftime('%Y-%m-%d %H:%M:%S'), '-' * 51)) #4.3 some parameters for K-fold and restart model start_epoch = 0 best_precision1 = 0 best_precision_save = 0 resume = False #4.4 restart the training process if resume: checkpoint = torch.load(config.best_models + str(fold) + "/model_best.pth.tar") start_epoch = checkpoint["epoch"] fold = checkpoint["fold"] best_precision1 = checkpoint["best_precision1"] model.load_state_dict(checkpoint["state_dict"]) optimizer.load_state_dict(checkpoint["optimizer"]) #4.5 get files and split for K-fold dataset #4.5.1 read files train_ = get_files(config.train_data,"train") #val_data_list = get_files(config.val_data,"val") test_files = get_files(config.test_data,"test") """ #4.5.2 split split_fold = StratifiedKFold(n_splits=3) folds_indexes = split_fold.split(X=origin_files["filename"],y=origin_files["label"]) folds_indexes = np.array(list(folds_indexes)) fold_index = folds_indexes[fold] #4.5.3 using fold index to split for train data and val data train_data_list = pd.concat([origin_files["filename"][fold_index[0]],origin_files["label"][fold_index[0]]],axis=1) val_data_list = pd.concat([origin_files["filename"][fold_index[1]],origin_files["label"][fold_index[1]]],axis=1) """ train_data_list,val_data_list = train_test_split(train_,test_size = 0.15,stratify=train_["label"]) #4.5.4 load dataset train_dataloader = DataLoader(ZiyiDataset(train_data_list),batch_size=config.batch_size,shuffle=True,collate_fn=collate_fn,pin_memory=True) val_dataloader = DataLoader(ZiyiDataset(val_data_list,train=False),batch_size=config.batch_size,shuffle=True,collate_fn=collate_fn,pin_memory=False) test_dataloader = DataLoader(ZiyiDataset(test_files,test=True),batch_size=1,shuffle=False,pin_memory=False) #scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer,"max",verbose=1,patience=3) scheduler = optim.lr_scheduler.StepLR(optimizer,step_size = 10,gamma=0.1) # optim.lr_scheduler 提供了基于多种epoch数目调整学习率的方法 # step_size(整数类型): 调整学习率的步长,每过step_size次,更新一次学习率 # gamma(float 类型):学习率下降的乘数因子 #4.5.5.1 define metrics train_losses = AverageMeter() train_top1 = AverageMeter() train_top2 = AverageMeter() valid_loss = [np.inf,0,0] model.train() #logs log.write('** start training here! **\n') log.write(' |------------ VALID -------------|----------- TRAIN -------------|------Accuracy------|------------|\n') log.write('lr iter epoch | loss top-1 top-2 | loss top-1 top-2 | Current Best | time |\n') log.write('-------------------------------------------------------------------------------------------------------------------------------\n') #4.5.5 train start = timer() for epoch in range(start_epoch,config.epochs): # 一个epoch为所有数据迭代一次进入模型拟合的过程,其中又分为batch_size来分批次进行 scheduler.step(epoch) # train #global iter for iter,(input,target) in enumerate(train_dataloader): #4.5.5 switch to continue train process model.train() input = Variable(input).cuda() target = Variable(torch.from_numpy(np.array(target)).long()).cuda() #target = Variable(target).cuda() output = model(input) loss = criterion(output,target) precision1_train,precision2_train = accuracy(output,target,topk=(1,2)) train_losses.update(loss.item(),input.size(0)) train_top1.update(precision1_train[0],input.size(0)) train_top2.update(precision2_train[0],input.size(0)) #backward optimizer.zero_grad() loss.backward() optimizer.step() lr = get_learning_rate(optimizer) print('\r',end='',flush=True) print('%0.4f %5.1f %6.1f | %0.3f %0.3f %0.3f | %0.3f %0.3f %0.3f | %s | %s' % (\ lr, iter/len(train_dataloader) + epoch, epoch, valid_loss[0], valid_loss[1], valid_loss[2], train_losses.avg, train_top1.avg, train_top2.avg,str(best_precision_save), time_to_str((timer() - start),'min')) , end='',flush=True) #evaluate lr = get_learning_rate(optimizer) #evaluate every half epoch valid_loss = evaluate(val_dataloader,model,criterion) is_best = valid_loss[1] > best_precision1 best_precision1 = max(valid_loss[1],best_precision1) try: best_precision_save = best_precision1.cpu().data.numpy() except: pass save_checkpoint({ "epoch":epoch + 1, "model_name":config.model_name, "state_dict":model.state_dict(), "best_precision1":best_precision1, "optimizer":optimizer.state_dict(), "fold":fold, "valid_loss":valid_loss, },is_best,fold) #adjust learning rate #scheduler.step(valid_loss[1]) print("\r",end="",flush=True) log.write('%0.4f %5.1f %6.1f | %0.3f %0.3f %0.3f | %0.3f %0.3f %0.3f | %s | %s' % (\ lr, 0 + epoch, epoch, valid_loss[0], valid_loss[1], valid_loss[2], train_losses.avg, train_top1.avg, train_top2.avg, str(best_precision_save), time_to_str((timer() - start),'min')) ) log.write('\n') time.sleep(0.01) best_model = torch.load(config.best_models + os.sep+config.model_name+os.sep+ str(fold) +os.sep+ 'model_best.pth.tar') model.load_state_dict(best_model["state_dict"]) test(test_dataloader,model,fold) if __name__ =="__main__": main()
使用Pytorch进行图像分类,AI challenger 农作物病害分类竞赛源码解读的更多相关文章
- [源码解读] ResNet源码解读(pytorch)
自己看读完pytorch封装的源码后,自己又重新写了一边(模仿其书写格式), 一些问题在代码中说明. import torch import torchvision import argparse i ...
- PyTorch源码解读之torchvision.transforms(转)
原文地址:https://blog.csdn.net/u014380165/article/details/79167753 版权声明:本文为博主原创文章,未经博主允许不得转载. https://bl ...
- PyTorch源码解读之torchvision.models(转)
原文地址:https://blog.csdn.net/u014380165/article/details/79119664 PyTorch框架中有一个非常重要且好用的包:torchvision,该包 ...
- PyTorch源码解读之torch.utils.data.DataLoader(转)
原文链接 https://blog.csdn.net/u014380165/article/details/79058479 写得特别好!最近正好在学习pytorch,学习一下! PyTorch中数据 ...
- pytorch bert 源码解读
https://daiwk.github.io/posts/nlp-bert.html 目录 概述 BERT 模型架构 Input Representation Pre-training Tasks ...
- [源码解析] PyTorch 分布式(1) --- 数据加载之DistributedSampler
[源码解析] PyTorch 分布式(1) --- 数据加载之DistributedSampler 目录 [源码解析] PyTorch 分布式(1) --- 数据加载之DistributedSampl ...
- [源码解析] PyTorch 分布式(2) --- 数据加载之DataLoader
[源码解析] PyTorch 分布式(2) --- 数据加载之DataLoader 目录 [源码解析] PyTorch 分布式(2) --- 数据加载之DataLoader 0x00 摘要 0x01 ...
- [源码解析] PyTorch 分布式之弹性训练(1) --- 总体思路
[源码解析] PyTorch 分布式之弹性训练(1) --- 总体思路 目录 [源码解析] PyTorch 分布式之弹性训练(1) --- 总体思路 0x00 摘要 0x01 痛点 0x02 难点 0 ...
- [源码解析] PyTorch 分布式之弹性训练(6)---监控/容错
[源码解析] PyTorch 分布式之弹性训练(6)---监控/容错 目录 [源码解析] PyTorch 分布式之弹性训练(6)---监控/容错 0x00 摘要 0x01 总体逻辑 1.1 Node集 ...
随机推荐
- 运行里用\\加IP地址访问远程主机和用mstsc登录远程主机有什么区别??
\\ip是访问共享:mstsc是直接远端控制主机 "\\加IP",只要是windows,除win9x外,默认系统自带共享服务,除非有防火墙,或者手工关闭lanmanserver & ...
- cc2640 细节展示
1. 对于 cc2640内部有两个单片机,一个m3负责内核,另一个是一个16位单片机,应该是msp430可以替代主机完成一些数据采集,adc采集,iic等等功能,传感器软件内部可以进行外设配置,并使用 ...
- [No0000C7]windows 10桌面切换快捷键,win10
windows 10桌面切换快捷键:Ctrl+Win+←/→ 切换窗口:Alt+Tab(不是新的,但任务切换界面改进)任务视图:Win+Tab(松开键盘界面不会消失)创建新的虚拟桌面:Win+Ctrl ...
- Python:random模块
近排练习代码时候经常会用到random模块,以防后面忘记还是需要记录一下. 首先导入模块: import random random.random():用于生成一个0到1的随机浮点数: 0 <= ...
- 新装的arcgis10.5特别卡
在之前装过arcgis10.5,用了一段时间感觉还不错. 由于二次开发要用到AO,当时缺少开发包,所以用了10.4. 现在跟师傅合作开发,要跟他保持一致,所以用了arcgis10.5. 但是装的 ...
- iOS-原生纯代码约束总结(二)之 AutoLayout
一,概述 AutoLayout相比AutoResizing更加实用,是可以完全替代AutoResizing的一种自动布局方式.而在使用AutoLayout前,我们必须理解一个属性,那就是transla ...
- es定制排序搜索结果
GET /company/employee/_search { "query": { "constant_score": { "filter" ...
- oc培训之变量课后练习
1.打印常用数据类型长度,打印2.3f,使小数点后面为4位. float i=2.3f; printf("%.4f",i); 2.打印以下图形. int i,j,k,m,n; ;i ...
- dedecms自定义表单提交成功后提示信息修改和跳转链接修改
我们在用dedecms自定义表单提交成功后提示信息一般是"Dedecms 提示信息",这个要怎么改成自己想要的文字呢?还有就是提示页停留时间,目前估计就2秒,太快了,要如何设置长点 ...
- centos 安装 pcre
版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/luozhonghua2014/article/details/37054235 #rpm -qa | ...