高并发之限流RateLimiter(二)
Guava RateLimiter提供了令牌桶算法实现:平滑突发限流(SmoothBursty)和平滑预热限流(SmoothWarmingUp)实现。
SmoothBursty:令牌生成速度恒定
- @Test
- public void testAcquire() {
- // acquire(i); 获取令牌,返回阻塞的时间,支持预消费.
- RateLimiter limiter = RateLimiter.create(1);
- for (int i = 1; i < 10; i++) {
- double waitTime = limiter.acquire();
- System.out.println("cutTime=" + longToDate(System.currentTimeMillis()) + " acq:" + i + " waitTime:" + waitTime);
- }
- }
- public static String longToDate(long lo){
- Date date = new Date(lo);
- SimpleDateFormat sd = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
- return sd.format(date);
- }
输出结果:
cutTime=2019-03-29 09:31:42 acq:1 waitTime:0.0
cutTime=2019-03-29 09:31:43 acq:2 waitTime:0.989135
cutTime=2019-03-29 09:31:44 acq:3 waitTime:0.998023
cutTime=2019-03-29 09:31:45 acq:4 waitTime:0.999573
cutTime=2019-03-29 09:31:46 acq:5 waitTime:0.999359
cutTime=2019-03-29 09:31:47 acq:6 waitTime:0.999566
cutTime=2019-03-29 09:31:48 acq:7 waitTime:0.998763
cutTime=2019-03-29 09:31:49 acq:8 waitTime:0.999163
cutTime=2019-03-29 09:31:50 acq:9 waitTime:1.000036
说明:每秒1个令牌生成一个令牌,从输出可看出很平滑,这种实现将突发请求速率平均成固定请求速率。
下面demo是突发请求:
- @Test
- public void testAcquire2() {
- // 请求突发
- RateLimiter limiter = RateLimiter.create(5);
- for (int i = 1; i < 5; i++) {
- double waitTime = 0;
- if(i == 2){
- waitTime = limiter.acquire(10);
- }else{
- waitTime = limiter.acquire(1);
- }
- System.out.println("cutTime=" + longToDate(System.currentTimeMillis()) + " acq:" + i + " waitTime:" + waitTime);
- }
- }
输出:
cutTime=2019-03-29 09:53:55 acq:1 waitTime:0.0
cutTime=2019-03-29 09:53:56 acq:2 waitTime:0.188901
cutTime=2019-03-29 09:53:58 acq:3 waitTime:1.99789
cutTime=2019-03-29 09:53:58 acq:4 waitTime:0.198832
说明:
i=1,消费i个令牌,此时还剩4个令牌;
i=2,突发10个请求,令牌桶算法也允许了这种突发(允许消费未来的令牌);
i=3,上次请求消费了,所以需要等待2s;
下面看源码:
简单介绍下:Stopwatch
- public final class Stopwatch {
- private final Ticker ticker;//计时器,用于获取当前时间
- private boolean isRunning;//计时器是否运行中的状态标记
- private long elapsedNanos;//用于标记从计时器开启到调用统计的方法时过去的时间
- private long startTick;//计时器开启的时刻时间
- private long elapsedNanos() {
- return this.isRunning ? this.ticker.read() - this.startTick + this.elapsedNanos : this.elapsedNanos;
- }
- public long elapsed(TimeUnit desiredUnit) {
- return desiredUnit.convert(this.elapsedNanos(), TimeUnit.NANOSECONDS);
- }
- }
TimeUnit:
- MILLISECONDS {
- public long toNanos(long d) { return x(d, C2/C0, MAX/(C2/C0)); }
- public long toMicros(long d) { return x(d, C2/C1, MAX/(C2/C1)); }
- public long toMillis(long d) { return d; }
- public long toSeconds(long d) { return d/(C3/C2); }
- public long toMinutes(long d) { return d/(C4/C2); }
- public long toHours(long d) { return d/(C5/C2); }
- public long toDays(long d) { return d/(C6/C2); }
- public long convert(long d, TimeUnit u) { return u.toMillis(d); }
- int excessNanos(long d, long m) { return 0; }
- },
- MICROSECONDS {
- public long toNanos(long d) { return x(d, C1/C0, MAX/(C1/C0)); }
- public long toMicros(long d) { return d; }
- public long toMillis(long d) { return d/(C2/C1); }
- public long toSeconds(long d) { return d/(C3/C1); }
- public long toMinutes(long d) { return d/(C4/C1); }
- public long toHours(long d) { return d/(C5/C1); }
- public long toDays(long d) { return d/(C6/C1); }
- public long convert(long d, TimeUnit u) { return u.toMicros(d); }
- int excessNanos(long d, long m) { return (int)((d*C1) - (m*C2)); }
- },
- NANOSECONDS {
- public long toNanos(long d) { return d; }
- public long toMicros(long d) { return d/(C1/C0); }
- public long toMillis(long d) { return d/(C2/C0); }
- public long toSeconds(long d) { return d/(C3/C0); }
- public long toMinutes(long d) { return d/(C4/C0); }
- public long toHours(long d) { return d/(C5/C0); }
- public long toDays(long d) { return d/(C6/C0); }
- public long convert(long d, TimeUnit u) { return u.toNanos(d); }
- int excessNanos(long d, long m) { return (int)(d - (m*C2)); }
- },
其中:
- static final long C0 = 1L;
- static final long C1 = C0 * 1000L;
- static final long C2 = C1 * 1000L;
- static final long C3 = C2 * 1000L;
- static final long C4 = C3 * 60L;
- static final long C5 = C4 * 60L;
- static final long C6 = C5 * 24L;
- @Test
- public void stopwatch1() {
- Stopwatch stopwatch = Stopwatch.createStarted();
- doSomething();
- stopwatch.stop(); // optional
- long millis = stopwatch.elapsed(MILLISECONDS);
- System.out.println("time: " + stopwatch);
- }
- @Test
- public void stopwatch2() {
- Stopwatch stopwatch = Stopwatch.createStarted();
- //doSomething();
- stopwatch.stop();
- long millis = stopwatch.elapsed(MILLISECONDS);
- System.out.println("time: " + stopwatch);
- stopwatch.reset().start();
- //doSomething();
- stopwatch.stop();
- millis = stopwatch.elapsed(MILLISECONDS);
- System.out.println("time: " + stopwatch);
- }
- public static void doSomething(){
- try {
- Thread.sleep(100);
- } catch (InterruptedException e) {
- e.printStackTrace();
- }
- }
stopwatch1结果:
time: 100.8 ms
执行过程:
StopWatch.createStarted()
创建并启动一个stopwatch实例,调用stopwatch.stop()停止计时,此时会更新stopwatch的elapsedNanos时间,为stopwatch开始启动到结束计时的时间,再次调用stopwatch.elapsed(),获取stopwatch在start-stop时间段,时间流逝的长度。RateLimiter.class
- public static RateLimiter create(double permitsPerSecond) {
- return create(permitsPerSecond, RateLimiter.SleepingStopwatch.createFromSystemTimer());//Stopwatch类稍后
- }
- @VisibleForTesting
- static RateLimiter create(double permitsPerSecond, RateLimiter.SleepingStopwatch stopwatch) {
- RateLimiter rateLimiter = new SmoothBursty(stopwatch, 1.0D);
- rateLimiter.setRate(permitsPerSecond);
- return rateLimiter;
- }
- public final void setRate(double permitsPerSecond) {
- Preconditions.checkArgument(permitsPerSecond > 0.0D && !Double.isNaN(permitsPerSecond), "rate must be positive");
- synchronized(this.mutex()) {
- this.doSetRate(permitsPerSecond, this.stopwatch.readMicros());
- }
- }
- abstract void doSetRate(double var1, long var3);
- 说明:this.stopwatch.readMicros());源码最终调用的是
- NANOSECONDS {
public long toNanos(long d) { return d; }
public long toMicros(long d) { return d/(C1/C0); } //return (stopwatch中的elapsedNanos,表示时间差)/(1L * 1000L/1L)
}
SmoothRateLimiter
- final void doSetRate(double permitsPerSecond, long nowMicros) {
- this.resync(nowMicros);
- double stableIntervalMicros = (double)TimeUnit.SECONDS.toMicros(1L) / permitsPerSecond;
- this.stableIntervalMicros = stableIntervalMicros;
- this.doSetRate(permitsPerSecond, stableIntervalMicros);
- }
- abstract void doSetRate(double var1, double var3);
- void resync(long nowMicros) {
- if (nowMicros > this.nextFreeTicketMicros) {
- //相当于(double)(nowMicros - this.nextFreeTicketMicros) * (permitsPerSecond double)TimeUnit.SECONDS.toMicros(1L)) //令牌生成速率:xx/单位时间
- double newPermits = (double)(nowMicros - this.nextFreeTicketMicros) / this.coolDownIntervalMicros();
- this.storedPermits = Math.min(this.maxPermits, this.storedPermits + newPermits);
- this.nextFreeTicketMicros = nowMicros;
- }
- }
说明:
nowMicros:表示用于标记从计时器开启到调用统计的方法时过去的时间
coolDownIntervalMicros:添加令牌时间间隔
stableIntervalMicros:添加令牌时间间隔 = (double)TimeUnit.SECONDS.toMicros(1L) / permitsPerSecond;(1秒/每秒的令牌数)
newPermits:时间段内新生令牌数
storedPermits:当前令牌数
nextFreeTicketMicros:
下一次请求可以获取令牌的起始时间,由于RateLimiter允许预消费,上次请求预消费令牌后,下次请求需要等待相应的时间到nextFreeTicketMicros时刻才可以获取令牌
SmoothBursty
- static final class SmoothBursty extends SmoothRateLimiter {
- final double maxBurstSeconds;
- SmoothBursty(SleepingStopwatch stopwatch, double maxBurstSeconds) {
- super(stopwatch, null);
- this.maxBurstSeconds = maxBurstSeconds;//在RateLimiter未使用时,最多存储几秒的令牌
- }
- void doSetRate(double permitsPerSecond, double stableIntervalMicros) {
- double oldMaxPermits = this.maxPermits;
- this.maxPermits = this.maxBurstSeconds * permitsPerSecond;
- if (oldMaxPermits == 1.0D / 0.0) { //相当于oldMaxPermits ==Double.POSITIVE_INFINITY ,Double.POSITIVE_INFINITY 表示无穷大
- this.storedPermits = this.maxPermits;
- } else {
- this.storedPermits = oldMaxPermits == 0.0D ? 0.0D : this.storedPermits * this.maxPermits / oldMaxPermits;
- }
- }
- long storedPermitsToWaitTime(double storedPermits, double permitsToTake) {
- return 0L;
- }
- double coolDownIntervalMicros() {
- return this.stableIntervalMicros;
- }
- }
参数说明:
maxBurstSeconds:在RateLimiter未使用时,最多存储几秒的令牌
permitsPerSecond: 速率=令牌数/每秒
maxPermits :最大存储令牌数 = maxBurstSeconds * permitsPerSecond
storedPermits: 当前存储令牌数
RateLimiter几个常用接口分析
1、acquire() 函数主要用于获取permits个令牌,并计算需要等待多长时间,进而挂起等待,并将该值返回
RateLimiter.calss
- @CanIgnoreReturnValue
- public double acquire() {
- return acquire(1);
- }
- /**
- * 获取令牌,返回阻塞的时间
- **/
- @CanIgnoreReturnValue
- public double acquire(int permits) {
- long microsToWait = reserve(permits);
- //获取等待时间后,阻塞线程
- stopwatch.sleepMicrosUninterruptibly(microsToWait);
- return 1.0 * microsToWait / SECONDS.toMicros(1L);
- }
- final long reserve(int permits) {
- checkPermits(permits);
- synchronized (mutex()) {
- return reserveAndGetWaitLength(permits, stopwatch.readMicros());
- }
- }
- final long reserveAndGetWaitLength(int permits, long nowMicros) {
- long momentAvailable = this.reserveEarliestAvailable(permits, nowMicros);
- return Math.max(momentAvailable - nowMicros, 0L);
- }
- abstract long reserveEarliestAvailable(int var1, long var2);
SmoothRateLimiter.class
- final long reserveEarliestAvailable(int requiredPermits, long nowMicros) {
- this.resync(nowMicros);
- long returnValue = this.nextFreeTicketMicros;//resync()方法后,如果nowMicros > this.nextFreeTicketMicros,等于nowMicros
- double storedPermitsToSpend = Math.min((double)requiredPermits, this.storedPermits);
- //freshPermits从令牌桶中获取令牌后还需要的令牌数量
- double freshPermits = (double)requiredPermits - storedPermitsToSpend;
- //平滑这里this.storedPermitsToWaitTime()直接返回0L + 还需要令牌数量/速率(需要的时间)
- long waitMicros = this.storedPermitsToWaitTime(this.storedPermits, storedPermitsToSpend) + (long)(freshPermits * this.stableIntervalMicros);
- //如果超前消费,将导致下次请求等待时间=LongMath.saturatedAdd(this.nextFreeTicketMicros, waitMicros);
- this.nextFreeTicketMicros = LongMath.saturatedAdd(this.nextFreeTicketMicros, waitMicros);
- this.storedPermits -= storedPermitsToSpend;
- return returnValue;
- }
2、tryAcquire()
函数可以尝试在timeout时间内获取令牌,如果可以则挂起等待相应时间并返回true,否则立即返回false
- public boolean tryAcquire(int permits, long timeout, TimeUnit unit) {
- long timeoutMicros = Math.max(unit.toMicros(timeout), 0L);//超时时间
- checkPermits(permits);
- long microsToWait;
- synchronized(this.mutex()) {
- long nowMicros = this.stopwatch.readMicros();
- if (!this.canAcquire(nowMicros, timeoutMicros)) {
- return false;
- }
- //获取需要阻塞时间
- microsToWait = this.reserveAndGetWaitLength(permits, nowMicros);
- }
- this.stopwatch.sleepMicrosUninterruptibly(microsToWait);
- return true;
- }
- private boolean canAcquire(long nowMicros, long timeoutMicros) {
- //下一次请求可以获取令牌的起始时间
- return this.queryEarliestAvailable(nowMicros) - timeoutMicros <= nowMicros;
- }
canAcquire
用于判断timeout时间内是否可以获取令牌,通过判断当前时间+超时时间是否大于nextFreeTicketMicros 来决定是否能够拿到足够的令牌数,如果可以获取到,则过程同acquire,线程sleep等待,如果通过canAcquire
在此超时时间内不能回去到令牌,则可以快速返回,不需要等待timeout后才知道能否获取到令牌。SmoothWarmingUp:令牌生成速度缓慢提升直到维持在一个稳定值
SmoothWarmingUp创建方式:RateLimiter.create(doublepermitsPerSecond, long warmupPeriod, TimeUnit unit)
permitsPerSecond表示每秒新增的令牌数,warmupPeriod表示在从冷启动速率过渡到平均速率的时间间隔。
- @Test
- public void acquire1() {
- RateLimiter limiter = RateLimiter.create(5, 1000, TimeUnit.MILLISECONDS);
- for (int i = 1; i < 6; i++) {
- System.out.println(limiter.acquire());
- }
- try {
- Thread.sleep(1000L);
- } catch (InterruptedException e) {
- e.printStackTrace();
- }
- for (int i = 1; i < 6; i++) {
- System.out.println(limiter.acquire());
- }
- }
结果:
0.0
0.518741
0.357811
0.219877
0.199584
0.0
0.361189
0.220761
0.19938
0.199856
速率是梯形上升速率的,也就是说冷启动时会以一个比较大的速率慢慢到平均速率;然后趋于平均速率(梯形下降到平均速率)。可以通过调节warmupPeriod参数实现一开始就是平滑固定速率。
参考:
https://www.cnblogs.com/xuwc/p/9123078.html
https://www.cnblogs.com/xuwc/p/9123078.html
高并发之限流RateLimiter(二)的更多相关文章
- SpringCloud之Zuul高并发情况下接口限流(十二)
高并发下接口限流技术gauva(谷歌的框架) MySql最大连接数3000: 原理:框架每秒向桶里放100个令牌,接口请求来了先去拿令牌,拿到令牌后才能继续向后走,否则不允许向后执行:当接口请求太频繁 ...
- coding++:高并发解决方案限流技术-使用RateLimiter实现令牌桶限流-Demo
RateLimiter是guava提供的基于令牌桶算法的实现类,可以非常简单的完成限流特技,并且根据系统的实际情况来调整生成token的速率. 通常可应用于抢购限流防止冲垮系统:限制某接口.服务单位时 ...
- 高并发解决方案限流技术-----使用RateLimiter实现令牌桶限流
1,RateLimiter是guava提供的基于令牌桶算法的实现类,可以非常简单的完成限流特技,并且根据系统的实际情况来调整生成token的速率.通常可应用于抢购限流防止冲垮系统:限制某接口.服务单位 ...
- coding++:高并发解决方案限流技术---漏桶算法限流--demo
1.漏桶算法 漏桶作为计量工具(The Leaky Bucket Algorithm as a Meter)时,可以用于流量整形(Traffic Shaping)和流量控制(TrafficPolici ...
- coding++:高并发解决方案限流技术--计数器--demo
1.它是限流算法中最简单最容易的一种算法 计数器实现限流 每分钟只允许10个请求 第一个请求进去的时间为startTime,在startTime + 60s内只允许10个请求 当60s内超过十个请求后 ...
- 面试官:来谈谈限流-RateLimiter源码分析
RateLimiter有两个实现类:SmoothBursty和SmoothWarmingUp,其都是令牌桶算法的变种实现,区别在于SmoothBursty加令牌的速度是恒定的,而SmoothWarmi ...
- 实例:接口并发限流RateLimiter
需求:接口每秒最多只能相应1个请求 1.创建 全局类对象 import com.google.common.util.concurrent.RateLimiter; import org.spring ...
- 超详细的Guava RateLimiter限流原理解析
超详细的Guava RateLimiter限流原理解析 mp.weixin.qq.com 点击上方“方志朋”,选择“置顶或者星标” 你的关注意义重大! 限流是保护高并发系统的三把利器之一,另外两个是 ...
- SpringBoot进阶教程(六十七)RateLimiter限流
在上一篇文章nginx限流配置中,我们介绍了如何使用nginx限流,这篇文章介绍另外一种限流方式---RateLimiter. v限流背景 在早期的计算机领域,限流技术(time limiting)被 ...
随机推荐
- 牛客网校招全国统一模拟笔试(三月场)- Java方向
1.若二叉树采用二叉链表存储结构,要交换其所有分支结点左.右子树的位置,利用()遍历方法最合适 A 前序 B 中序 C 后序 D 按层次 解析:显然后序遍历比较合理.正常的逻辑应该就是:做好当前结点子 ...
- python脚本解析json文件
python脚本解析json文件 没写完.但是有效果.初次尝试,写的比较不简洁... 比较烦的地方在于: 1,中文编码: pSpecs.decode('raw_unicode_escape') 2,花 ...
- topcoder srm 663 div1
problem1 link 每次枚举$S$的两种变化,并判断新的串是否是$T$的子串.不是的话停止搜索. problem2 link 首先考慮增加1个面值为1的硬币后,$ways$数组有什么变化.设原 ...
- Oracle 11g 导出数据报 “ORA-01455: 转换列溢出整数数据类型”的问题
最近发现云服务器上的Oracle 11g在导出时报错,如下: ... . 正在导出后期表活动. 正在导出实体化视图. 正在导出快照日志EXP-00008: 遇到 ORACLE 错误 1455ORA-0 ...
- Python3基础 dict clear 清空一个字典
Python : 3.7.0 OS : Ubuntu 18.04.1 LTS IDE : PyCharm 2018.2.4 Conda ...
- Python3基础 dict setdefault 根据键查找值,找不到键会添加
Python : 3.7.0 OS : Ubuntu 18.04.1 LTS IDE : PyCharm 2018.2.4 Conda ...
- img的基线对齐问题
http://blog.csdn.net/u011997156/article/details/44806523
- 题解——洛谷P1550 [USACO08OCT]打井Watering Hole(最小生成树,建图)
题面 题目背景 John的农场缺水了!!! 题目描述 Farmer John has decided to bring water to his N (1 <= N <= 300) pas ...
- 题解——洛谷P3128 [USACO15DEC]最大流Max Flow
裸的树上差分 因为要求点权所以在点上差分即可 #include <cstdio> #include <algorithm> #include <cstring> u ...
- log4j2打印Mybatis执行的SQL语句及SQL语句的执行时间
http://blog.csdn.net/zjq852533445/article/details/78320012