题意:给一个有向图,从任意点开始,最多走m步,求形成的图案总数。

思路:令dp[i][j]表示走j步最后到达i的方法数,则dp[i][j]=∑dp[k][j-1],其中k表示可以直接到达i的点,答案=∑dp[i][j]。关键在于如何减少状态转移的时间,考虑用矩阵加速。

构造矩阵:D = ,其中a[i][j]表示有向图,用于状态转移,右边的一列1用于累加答案

则答案=[1,1,...1n+1]*DM-1=∑∑DM-1[i][j],1≤i≤n+1,1≤j≤n+1

PS:封装的ModInt放矩阵的最里面进行运算比直接取模慢了3倍多,因此在性能瓶颈地方尽量用最快的写法

#pragma comment(linker, "/STACK:10240000")
#include <map>
#include <set>
#include <cmath>
#include <ctime>
#include <deque>
#include <queue>
#include <stack>
#include <vector>
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm> using namespace std; #define X first
#define Y second
#define pb push_back
#define mp make_pair
#define all(a) (a).begin(), (a).end()
#define fillchar(a, x) memset(a, x, sizeof(a))
#define copy(a, b) memcpy(a, b, sizeof(a)) typedef long long ll;
typedef pair<int, int> pii;
typedef unsigned long long ull; #ifndef ONLINE_JUDGE
void RI(vector<int>&a,int n){a.resize(n);for(int i=;i<n;i++)scanf("%d",&a[i]);}
void RI(){}void RI(int&X){scanf("%d",&X);}template<typename...R>
void RI(int&f,R&...r){RI(f);RI(r...);}void RI(int*p,int*q){int d=p<q?:-;
while(p!=q){scanf("%d",p);p+=d;}}void print(){cout<<endl;}template<typename T>
void print(const T t){cout<<t<<endl;}template<typename F,typename...R>
void print(const F f,const R...r){cout<<f<<", ";print(r...);}template<typename T>
void print(T*p, T*q){int d=p<q?:-;while(p!=q){cout<<*p<<", ";p+=d;}cout<<endl;}
#endif
template<typename T>bool umax(T&a, const T&b){return b<=a?false:(a=b,true);}
template<typename T>bool umin(T&a, const T&b){return b>=a?false:(a=b,true);} const double PI = acos(-1.0);
const int INF = 1e9 + ;
const double EPS = 1e-12; /* -------------------------------------------------------------------------------- */ const int maxn = ; template<int mod>
struct ModInt {
const static int MD = mod;
int x;
ModInt(ll x = ): x(x % MD) {}
int get() { return x; } ModInt operator + (const ModInt &that) const { int x0 = x + that.x; return ModInt(x0 < MD? x0 : x0 - MD); }
ModInt operator - (const ModInt &that) const { int x0 = x - that.x; return ModInt(x0 < MD? x0 + MD : x0); }
ModInt operator * (const ModInt &that) const { return ModInt((long long)x * that.x % MD); }
ModInt operator / (const ModInt &that) const { return *this * that.inverse(); } ModInt operator += (const ModInt &that) { x += that.x; if (x >= MD) x -= MD; }
ModInt operator -= (const ModInt &that) { x -= that.x; if (x < ) x += MD; }
ModInt operator *= (const ModInt &that) { x = (long long)x * that.x % MD; }
ModInt operator /= (const ModInt &that) { *this = *this / that; } ModInt inverse() const {
int a = x, b = MD, u = , v = ;
while(b) {
int t = a / b;
a -= t * b; std::swap(a, b);
u -= t * v; std::swap(u, v);
}
if(u < ) u += MD;
return u;
} };
typedef ModInt<> mint; int N;
struct Matrix {
int a[maxn][maxn]; Matrix() {
for (int i = ; i < N; i ++) {
for (int j = ; j < N; j ++) {
a[i][j] = ;
}
}
} static Matrix unit() {
Matrix ans;
for (int i = ; i < N; i ++) ans.a[i][i] = ;
return ans;
} Matrix &operator * (const Matrix &that) const {
static Matrix ans;
for (int i = ; i < N; i ++) {
for (int j = ; j < N; j ++) {
ans.a[i][j] = ;
for (int k = ; k < N; k ++) {
ans.a[i][j] += a[i][k] * that.a[k][j];
ans.a[i][j] %= ;
}
}
}
return ans;
} static Matrix power(Matrix a, int n) {
Matrix ans = unit(), buf = a;
while (n) {
if (n & ) ans = ans * buf;
buf = buf * buf;
n >>= ;
}
return ans;
}
}; class Timer {
private:
clock_t _start;
clock_t _end; public:
void init() {
_start = clock();
}
void get() {
_end = clock();
cout << double(_end - _start) / CLK_TCK << endl;
}
};
Timer clk; int main() {
#ifndef ONLINE_JUDGE
freopen("in.txt", "r", stdin);
//freopen("out.txt", "w", stdout);
#endif // ONLINE_JUDGE
int T, n, m, k, x;
cin >> T;
while (T --) {
cin >> n >> m;
Matrix a;
N = n + ;
for (int i = ; i < n; i ++) {
scanf("%d", &k);
for (int j = ; j < k; j ++) {
scanf("%d", &x);
a.a[i][-- x] = ;
}
}
for (int i = ; i < N; i ++) a.a[i][N - ] = ;
Matrix A = Matrix::power(a, m - );
mint ans = ;
for (int i = ; i < N; i ++) {
for (int j = ; j < N; j ++) {
ans += A.a[i][j];
}
}
cout << ans.get() << endl;
}
return ;
}

[hdu5411 CRB and Puzzle]DP,矩阵快速幂的更多相关文章

  1. HDU5411——CRB and Puzzle——————【矩阵快速幂优化dp】

    CRB and Puzzle Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)To ...

  2. HDU 5411 CRB and puzzle (Dp + 矩阵高速幂)

    CRB and Puzzle Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) T ...

  3. bnuoj 34985 Elegant String DP+矩阵快速幂

    题目链接:http://acm.bnu.edu.cn/bnuoj/problem_show.php?pid=34985 We define a kind of strings as elegant s ...

  4. HDU 5434 Peace small elephant 状压dp+矩阵快速幂

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5434 Peace small elephant  Accepts: 38  Submissions: ...

  5. 【BZOJ】2004: [Hnoi2010]Bus 公交线路 状压DP+矩阵快速幂

    [题意]n个点等距排列在长度为n-1的直线上,初始点1~k都有一辆公车,每辆公车都需要一些停靠点,每个点至多只能被一辆公车停靠,且每辆公车相邻两个停靠点的距离至多为p,所有公车最后会停在n-k+1~n ...

  6. 【BZOJ】4861: [Beijing2017]魔法咒语 AC自动机+DP+矩阵快速幂

    [题意]给定n个原串和m个禁忌串,要求用原串集合能拼出的不含禁忌串且长度为L的串的数量.(60%)n,m<=50,L<=100.(40%)原串长度为1或2,L<=10^18. [算法 ...

  7. BZOJ5298 CQOI2018 交错序列 【DP+矩阵快速幂优化】*

    BZOJ5298 CQOI2018 交错序列 [DP+矩阵快速幂优化] Description 我们称一个仅由0.1构成的序列为"交错序列",当且仅当序列中没有相邻的1(可以有相邻 ...

  8. Codeforces 621E Wet Shark and Block【dp + 矩阵快速幂】

    题意: 有b个blocks,每个blocks都有n个相同的0~9的数字,如果从第一个block选1,从第二个block选2,那么就构成12,问对于给定的n,b有多少种构成方案使最后模x的余数为k. 分 ...

  9. codeforces E. Okabe and El Psy Kongroo(dp+矩阵快速幂)

    题目链接:http://codeforces.com/contest/821/problem/E 题意:我们现在位于(0,0)处,目标是走到(K,0)处.每一次我们都可以从(x,y)走到(x+1,y- ...

  10. [BZOJ1009] [HNOI2008] GT考试(KMP+dp+矩阵快速幂)

    [BZOJ1009] [HNOI2008] GT考试(KMP+dp+矩阵快速幂) 题面 阿申准备报名参加GT考试,准考证号为N位数X1X2-.Xn,他不希望准考证号上出现不吉利的数字.他的不吉利数学A ...

随机推荐

  1. 数据结构(C语言版)---栈

    1.栈:仅在表尾进行插入和删除操作的线性表.后进先出LIFO. 1)表尾端(允许插入和删除的一端)为栈顶,表头端(不允许插入和删除的一端)为栈底. 2)入栈:插入元素的操作.出栈:删除栈顶元素 3)栈 ...

  2. Cocos2d-x在win7下的android交叉编译环境

    cocos2d-x在win7下的Android交叉编译环境 2014年4月14日 cocos2d-x环境配置 前面把Visual Studio+Python开发环境配好了,但还没有讲如何在Androi ...

  3. 被折磨致死的heroku——herku部署

    最近一直在弄heroku部署上线,但是因为中国墙和英语问题,一直弄不好,,很是烦躁,所有暂时先放弃了,但是因为查询了一些资料,有些文档链接有必要放到下面,方便各位和自己查看: heroku官方网站: ...

  4. SpringBoot与单元测试JUnit的结合

    有些人认为,写单元测试就是在浪费时间 ,写完代码,依然还是能够进行测试的.但是,还是建议写单元测试的,可以让你的条理更加清晰,而且当某个功能出现问题时,可能通过单元测试很容易的定位和解决问题.本文主要 ...

  5. Java IO 流 -- 转换流: InputStreamReader OutputStreamWriter

    java 中 转换流是以字符流的形式操作字节流,需要注意一下两点: 1.操作内容必须是纯文本 2.指定字符集避免乱码 操作控制台输入输出: try (BufferedReader br = new B ...

  6. for嵌套setTimeout的心得

    export default { data() { return { dialogList: [] } }, created() { this.setList() }, methods: { setL ...

  7. linux下的.ssh文件夹路径等

    1.linux下的.ssh文件夹在~下,直接cd ~/.ssh即可 2.tp经过gd类处理过的水印图片格式为png 3.前端扒下别人家的网站如果自己本地打开有出现相同的代码段则有可能是js动态添加的, ...

  8. dockerfile构架镜像(8)

    nginx镜像的构建 先查看下本地的镜像,选取官网的centos作为base image: [root@server ~]# docker images 创建一个目录专门用来存放的目录,也就是Dock ...

  9. 【Linux常见命令】tail命令

    tail - output the last part of files tail 命令可用于查看文件的内容,有一个常用的参数 -f 常用于查阅正在改变的日志文件. tail -f filename  ...

  10. 【Linux常见命令】wc命令

    wc - print newline, word, and byte counts for each file wc命令用于计算字数. 利用wc指令我们可以计算文件的Byte数.字数.或是列数,若不指 ...