[vijos1460&Metocode P223]拉力赛<LCA>
题目链接:https://vijos.org/p/1460
http://oj.fjaxyz.com:3389/problem.php?id=223
我不禁开始怀疑,这,真的是最近公共祖先的题吗,我是从一个讲解LCA的博客里找到这道题的,然后我就乖乖的用了可爱的LCA倍增,然后我就更加愉快的TLE了。
【思路】
判断u,v 的最近公共祖先是不是u,如果是,就加上这条路线。。。
判断u,v的最近公共祖先是不是u,TLE的代码是用倍增算法做的这个,但是啊,其实我们换一种说法就是判断u是不是v的祖先
那么这就简单了,想想LCA的离线做法tarjan,里面的dfn数组,储存的是i点的dfs序号,然后实质上其实是前序遍历序号
怎么判断u是v的祖先?刚刚才提到前序遍历,那我想想后序遍历,前序是根左右,后序是左右根,那么意思就是根在前序是比叶节点序号小,在后序是比叶节点序号大
于是我们储存数组begn[] ed[]储存点的前序序号和后序序号,如果begn[u]<begn[v]&&ed[u]>ed[v]说明u是v的祖先
解决了这个问题,接下来就是求距离,我们储存数组dis表示点i到根节点的距离,
所以u,v距离就是dis[u]+dis[v]-2*dis[lca(u,v)],由于这题满足条件是u为v的祖先,所以距离简化为dis[v]-dis[u]
LCA倍增算法
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<cmath>
#include<stack>
#include<queue>
#include<cstdlib>
#define maxn 10005
#define ll long long
using namespace std; struct node{
int u,v;ll w;int nxt;
}e[maxn]; int head[maxn],n,m,f[maxn][];
ll dis[maxn],ans;
int cnt,vis[maxn],dep[maxn]; int tot;
void adde(int u,int v,int w){
e[tot]=(node){u,v,w,head[u]};
head[u]=tot;tot++;
} void build(int u){
for(int i=head[u];i!=-;i=e[i].nxt){
int v=e[i].v;
if(!vis[v]){
f[v][]=u;
dis[v]=dis[u]+e[i].w;
dep[v]=dep[u]+;
vis[v]=;
build(v);
}
}
} void first(){
for(int j=;j<=;j++){
for(int i=;i<=n;i++){
f[i][j]=f[f[i][j-]][j-];
}
}
} int up(int x,int d){
for(int i=;i<=d;i++)
x=f[x][];
return x;
} int find(int x,int y){
if(dep[x]<dep[y])swap(x,y);
if(dep[x]!=dep[y]){
int dd=dep[x]-dep[y];
x=up(x,dd);
}
if(x==y){return x;}
for(int j=;j>=;j--){
if(f[x][j]!=f[y][j]){
x=f[x][j];y=f[y][j];
}
}
return f[x][];
} ll len(int u,int v){
return dis[v]-dis[u];
} int main(){
memset(head,-,sizeof(head));
scanf("%d%d",&n,&m);
for(int i=;i<n;i++){
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
adde(u,v,w);
}
build();
first();
for(int i=;i<=m;i++){
int u,v;
scanf("%d%d",&u,&v);
int lca=find(u,v);
if(lca==u){ans+=len(u,v);cnt++;}
}
printf("%d\n%lld",cnt,ans);
}
倍增(TLE)
运用前序后序的dfs算法
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<cmath>
#include<stack>
#include<queue>
#include<cstdlib>
#define maxn 10005
using namespace std; struct node{
int u,v;long long w;int nxt;
}e[maxn]; int head[maxn],n,m;
int cnt,vis[maxn];
int begn[maxn],ed[maxn];
long long ans,dis[maxn]; int tot;
void adde(int u,int v,long long w){
e[tot]=(node){u,v,w,head[u]};
head[u]=tot;tot++;
} int num,hehe;
void build(int u){
num++;begn[u]=num;
for(int i=head[u];i!=-;i=e[i].nxt){
int v=e[i].v;
if(!vis[v]){;
dis[v]=dis[u]+e[i].w;
vis[v]=;
build(v);
}
}
hehe++;ed[u]=hehe;
} int main(){
memset(head,-,sizeof(head));
scanf("%d%d",&n,&m);
for(int i=;i<n;i++){
int u,v;long long w;
scanf("%d%d%lld",&u,&v,&w);
adde(u,v,w);
}
build();
for(int i=;i<=m;i++){
int u,v;
scanf("%d%d",&u,&v);
if(begn[u]<=begn[v]&&ed[u]>=ed[v]){
ans+=dis[v]-dis[u];cnt++;
}
}
printf("%d\n%lld",cnt,ans);
}
AC于vijos
然后问题就来了,这个在vijos上AC的代码在meto code上还是WA了,我已经放弃了,因为meto code不提供错误数据也不告诉我错了几组,所以我最终还是没有在meto code上成功
[vijos1460&Metocode P223]拉力赛<LCA>的更多相关文章
- 算法笔记--lca倍增算法
算法笔记 模板: vector<int>g[N]; vector<int>edge[N]; ][N]; int deep[N]; int h[N]; void dfs(int ...
- 最近公共祖先LCA(Tarjan算法)的思考和算法实现
LCA 最近公共祖先 Tarjan(离线)算法的基本思路及其算法实现 小广告:METO CODE 安溪一中信息学在线评测系统(OJ) //由于这是第一篇博客..有点瑕疵...比如我把false写成了f ...
- lca(最近公共祖先(离线))
转自大佬博客 : https://www.cnblogs.com/JVxie/p/4854719.html LCA 最近公共祖先 Tarjan(离线)算法的基本思路及其算法实现 首先是最近公共祖先 ...
- Vijos——T1406 拉力赛
https://vijos.org/p/1460 描述 车展结束后,游乐园决定举办一次盛大的山道拉力赛,平平和韵韵自然也要来参加大赛. 赛场上共有n个连通的计时点,n-1条赛道(构成了一棵树).每个计 ...
- 最近公共祖先LCA(Tarjan算法)的思考和算法实现——转载自Vendetta Blogs
LCA 最近公共祖先 Tarjan(离线)算法的基本思路及其算法实现 小广告:METO CODE 安溪一中信息学在线评测系统(OJ) //由于这是第一篇博客..有点瑕疵...比如我把false写成了f ...
- LCA 最近公共祖先 Tarjan(离线)算法的基本思路及其算法实现
首先是最近公共祖先的概念(什么是最近公共祖先?): 在一棵没有环的树上,每个节点肯定有其父亲节点和祖先节点,而最近公共祖先,就是两个节点在这棵树上深度最大的公共的祖先节点. 换句话说,就是两个点在这棵 ...
- 【模板】Tarjian求LCA
概念 公共祖先,就是两个节点在这棵树上深度最大的公共的祖先节点 举个例子吧,如下图所示4和5的最近公共祖先是2,5和3的最近公共祖先是1,2和1的最近公共祖先是1. 算法 常用的求LCA的算法有:Ta ...
- BZOJ 3083: 遥远的国度 [树链剖分 DFS序 LCA]
3083: 遥远的国度 Time Limit: 10 Sec Memory Limit: 1280 MBSubmit: 3127 Solved: 795[Submit][Status][Discu ...
- BZOJ 3626: [LNOI2014]LCA [树链剖分 离线|主席树]
3626: [LNOI2014]LCA Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2050 Solved: 817[Submit][Status ...
随机推荐
- 零基础JavaScript编码(二)
任务目的 在上一任务基础上继续JavaScript的体验 学习JavaScript中的if判断语法,for循环语法 学习JavaScript中的数组对象 学习如何读取.处理数据,并动态创建.修改DOM ...
- frida报错frida.InvalidArgumentError: device not found问题解决方案
一.问题描述 python安装好frida框架后,在安卓端启动了frida-server,启动要hook的应用,在cmd中执行python脚本,报错frida.InvalidArgumentE ...
- 打造你的第一个 Electron 应用
Electron 可以让你使用纯 JavaScript 调用丰富的原生(操作系统) APIs 来创造桌面应用. 你可以把它看作一个 Node. js 的变体,它专注于桌面应用而不是 Web 服务器端. ...
- div隐藏滚动条,仍可滚动
<!DOCTYPE html><html><head lang="en"> <meta charset="UTF-8" ...
- docker学习之路
环境 : ubuntu 16.4 下载docker 首先使用命令行下载 docker wget -qO- https://get.docker.com/ | sh 启动 下载完成之后进行一个启动,但是 ...
- Nodejs:md5入门介绍及crypto模块的应用
简介 MD5(Message-Digest Algorithm)是计算机安全领域广泛使用的散列函数(又称哈希算法.摘要算法),主要用来确保消息的完整和一致性.常见的应用场景有密码保护.下载文件校验等. ...
- 【Weiss】【第03章】练习3.11:比较单链表递归与非递归查找元素
[练习3.11] 编写查找一个单链表特定元素的程序.分别用递归和非递归实现,并比较它们的运行时间. 链表必须达到多大才能使得使用递归的程序崩溃? Answer: 实现都是比较容易的,但是实际上查找链表 ...
- 小白学 Python 数据分析(18):Matplotlib(三)常用图表(上)
人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):P ...
- Github Pages访问太慢?通过Netlify免费加速
github pages vs netlify Github Pages为Github提供的一项静态站点托管服务,它直接从Github仓库获取静态文件进行发布,然后提供一个github.io的二级域名 ...
- Vulnhub靶场 DC-2 WP
DC-2简介 描述 与DC-1一样,DC-2是另一个专门构建的易受攻击的实验室,目的是获得渗透测试领域的经验. 与原始DC-1一样,它在设计时就考虑了初学者. 必须具备Linux技能并熟悉Linux命 ...