LG_2967_[USACO09DEC]视频游戏的麻烦Video Game Troubles
题目描述
Farmer John's cows love their video games! FJ noticed that after playing these games that his cows produced much more milk than usual, surely because contented cows make more milk.
The cows disagree, though, on which is the best game console. One cow wanted to buy the Xbox 360 to play Halo 3; another wanted to buy the Nintendo Wii to play Super Smash Brothers Brawl; a third wanted to play Metal Gear Solid 4 on the PlayStation 3. FJ wants to purchase the set of game consoles (no more than one each) and games (no more than one each -- and within the constraints of a given budget) that helps his cows produce the most milk and thus nourish the most children.
FJ researched N (1 <= N <= 50) consoles, each with a console price P_i (1 <= P_i <= 1000) and a number of console-specific games G_i (1 <= G_i <= 10). A cow must, of course, own a console before she can buy any game that is specific to that console. Each individual game has a game price GP_j (1 <= GP_j price <= 100) and a production value (1 <= PV_j <= 1,000,000), which indicates how much milk a cow will produce after playing the game. Lastly, Farmer John has a budget V (1 <= V <= 100,000) which is the maximum amount of money he can spend. Help him maximize the sum of the production values of the games he buys.
Consider one dataset with N=3 consoles and a V=800budget.Thefirstconsolecosts800 budget. The first console costs 800budget.Thefirstconsolecosts300 and has 2 games with cost 30and30 and 30and25 and production values as shown:
Game # Cost Production Value
1 $30 50
2 $25 80
The second console costs $600 and has only 1 game:
Game # Cost Production Value
1 $50 130
The third console costs $400 and has 3 games:
Game # Cost Production Value
1 $40 70
2 $30 40
3 $35 60
Farmer John should buy consoles 1 and 3, game 2 for console 1, and games 1 and 3 for console 3 to maximize his expected production at 210:
Production Value
Budget: $800
Console 1 -$300
Game 2 -$25 80
Console 3 -$400
Game 1 -$40 70
Game 3 -$35 60
-------------------------------------------
Total: 0 (>= 0) 210
农夫约翰的奶牛们游戏成瘾!本来约翰是想要按照调教兽的做法拿她们去电击戒瘾的,可是 后来他发现奶牛们玩游戏之后比原先产更多的奶.很明显,这是因为满足的牛会产更多的奶.
但是,奶牛们在哪个才是最好的游戏平台这个问题上产生了巨大的分歧.约翰想要在给定的 预算内购入一些游戏平台和一些游戏,使他的奶牛们生产最多的奶牛以养育最多的孩子.
约翰研究了N种游戏平台,每一种游戏平台的价格是Pi 并且每一种游戏平台有Gi个只能在这种平台上运行的游戏.很明显,奶牛必须 先买进一种游戏平台,才能买进在这种游戏平台上运行的游戏.每一个游戏有一个游戏的价 格GPi并且有一个产出值PVj< 1000000),表示一只牛在玩这个游戏之后会产出多少牛奶.最后,农夫约翰的预算为V<100000),即他最多可以花费的金钱.请 帮助他确定应该买什么游戏平台和游戏,使得他能够获得的产出值的和最大.
输入输出格式
输入格式
Line 1: Two space-separated integers: N and V
Lines 2..N+1: Line i+1 describes the price of and the games
available for console i; it contains: P_i, G_i, and G_i pairs of space-separated integers GP_j, PV_j
输出格式
- Line 1: The maximum production value that Farmer John can get with his budget.
样例
INPUT
3 800
300 2 30 50 25 80
600 1 50 130
400 3 40 70 30 40 35 60
OUTPUT
210
SOLUTION
多重背包dp
考场上写崩掉了,没事瞎用树形dp的正在面壁思过中。。。
其实本体的思路应该是非常清晰的,所以这里重点还是看一下代码的实现吧。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
using namespace std;
typedef long long LL;
#define Max(a,b) ((a>b)?a:b)
#define Min(a,b) ((a<b)?a:b)
inline int read(){
int x=0,f=1;char ch=getchar();
while (ch<'0'||ch>'9') {if (ch=='-') f=-1;ch=getchar();}
while (ch>='0'&&ch<='9') {x=x*10+ch-48;ch=getchar();}
return x*f;}
const int N=550,M=101000;
short n,m,V,cnt=0,id=0;
int f[2][M],ans=0;
int main(){
int i,j;
n=read();V=read();memset(f,0,sizeof(f));
for (i=1;i<=n;++i){
int p=read(),g=read();
for (j=p;j<=V;++j) f[i&1][j]=f[(i-1)&1][j-p];//先扣去买这个平台的游戏的平台费用
while (g--){
int cst=read(),pdc=read();
for (j=V;j>=cst+p;--j)
f[i&1][j]=Max(f[i&1][j],f[i&1][j-cst]+pdc);//正常的背包转移
}
for (j=0;j<=V;++j) f[i&1][j]=Max(f[i&1][j],f[(i-1)&1][j]);//或者我们索性不买这个平台
}
printf("%d\n",f[n&1][V]);
return 0;
}
LG_2967_[USACO09DEC]视频游戏的麻烦Video Game Troubles的更多相关文章
- P2967 [USACO09DEC]视频游戏的麻烦Video Game Troubles
冲刺阶段的首篇题解! 题目链接:P2967 [USACO09DEC]视频游戏的麻烦Video Game Troubles: 题目概述: 总共N个游戏平台,金额上限V元,给出每个游戏平台的价钱和其上游戏 ...
- [USACO09DEC]视频游戏的麻烦Video Game Troubles(DP)
https://www.luogu.org/problem/P2967 https://ac.nowcoder.com/acm/contest/1077/B 题目描述 Farmer John's co ...
- <USACO09DEC>视频游戏的麻烦Video Game Troublesの思路
emm今天模拟赛的题.神奇地A了 #include<cstdio> #include<cstring> #include<iostream> #include< ...
- [Luogu2967] 视频游戏的麻烦Video Game Troubles
农夫约翰的奶牛们游戏成瘾!本来约翰是想要按照调教兽的做法拿她们去电击戒瘾的,可是 后来他发现奶牛们玩游戏之后比原先产更多的奶.很明显,这是因为满足的牛会产更多的奶. 但是,奶牛们在哪个才是最好的游 ...
- 【USACO12JAN】视频游戏的连击Video Game Combos
题目描述 Bessie is playing a video game! In the game, the three letters 'A', 'B', and 'C' are the only v ...
- [洛谷3041]视频游戏的连击Video Game Combos
题目描述 Bessie is playing a video game! In the game, the three letters 'A', 'B', and 'C' are the only v ...
- [USACO12JAN]视频游戏的连击Video Game Combos(AC自动机+DP)
Description 贝西正在打格斗游戏.游戏里只有三个按键,分别是“A”.“B”和“C”.游戏中有 N 种连击 模式,第 i 种连击模式以字符串 Si 表示,只要贝西的按键中出现了这个字符串,就算 ...
- [Luogu3041][USACO12JAN]视频游戏的连击Video Game Combos
题面 sol 设\(f_{i,j}\)表示填了前\(i\)个字母,在\(AC\)自动机上跑到了节点\(j\)的最大得分.因为匹配需要暴跳\(fail\)所以预先把\(fail\)指针上面的匹配数传下来 ...
- 洛谷P3041 视频游戏的连击Video Game Combos [USACO12JAN] AC自动机+dp
正解:AC自动机+dp 解题报告: 传送门! 算是个比较套路的AC自动机+dp趴,,, 显然就普普通通地设状态,普普通通地转移,大概就f[i][j]:长度为i匹配到j 唯一注意的是,要加上所有子串的贡 ...
随机推荐
- 动态加载JS文件方法总结
1.JQuery方法 $.getScript("./test.js"); //加载js文件 $.getScript("./test.js",function() ...
- python刷LeetCode:2.两数相加
难度等级:中等 题目描述: 给出两个 非空 的链表用来表示两个非负的整数.其中,它们各自的位数是按照 逆序 的方式存储的,并且它们的每个节点只能存储 一位 数字. 如果,我们将这两个数相加起来,则会返 ...
- 冲刺期末阶段一<公文档案流转管理系统>
今天下午的四节课要求自己完成公文流转管理系统,并规定时间看个人进程,相对来说我对增删改查掌握的不彻底,对项目的逻辑框架不太熟练,所以我感觉今天的进度有点慢.有待继续学习. 完成进度:1.分步骤先理清整 ...
- 34. docker swarm Dockerstack 部署 wordpress
1. 查看 docker compose depoly 语法 官网地址 : https://docs.docker.com/compose/compose-file/#deploy ENDPOI ...
- html_js_jq_css
// ----- JQ $(function(){$(div').bind('mouseout mouseover', function () {// 移入和移出分别执行一次alert('bind 可 ...
- 线性可分支持向量机与软间隔最大化--SVM(2)
线性可分支持向量机与软间隔最大化--SVM 给定线性可分的数据集 假设输入空间(特征向量)为,输出空间为. 输入 表示实例的特征向量,对应于输入空间的点: 输出 表示示例的类别. 我们说可以通过间隔最 ...
- C/C++ 取整函数ceil(),floor()
使用floor函数.floor(x)返回的是小于或等于x的最大整数.如: floor(10.5) == 10 floor(-10.5) == -11 使用ceil函数.ceil(x)返回 ...
- flask框架-大结局
flask-script 用于实现类似于django中 python3 manage.py runserver ...类似的命令. 安装 pip3 install flask-script 使用: f ...
- 关于redis的使用总结
简介 redis是一个开源的用c语言编写的数据库,但并不像常规的关系型数据库那样把数据存储在表中 , 而是像Java中的Map集合一样,存储的是一系列key=value键值对,redis属于NoSQL ...
- 远程调用shell脚本文件和远程复制文件
1.安装sshpass yum install sshpass 2.本地调用远程服务器的shell脚本文件: sshpass -p sa ssh root@192.168.56.105 -C &quo ...