巡回旅行商问题(Traveling Salesman Problem,TSP),也称为货郎担问题。该问题可简单描述为走遍n个城市的最短路。几十年来,出现了很多近似优化算法。如近邻法、贪心算法、最近插入法、最远插入法、模拟退火算法以及遗传算法。

问题1 设有一个售货员从10个城市中的某一个城市的出发,去其他9个城市推销产品。10个城市的距离已经给出。10个城市相互距离如下表。要求每个城市到达一次仅以此后,回到原出发城市。问:他如何选择旅行路线,使总路程最短。

model:
sets:
city/1..10/:u;
link(city,city):d,x;
endsets
data:
d=0 7 4 5 8 6 12 13 11 18
7 0 3 10 9 14 5 14 17 17
4 3 0 5 9 10 21 8 27 12
5 10 5 0 14 9 10 9 23 16
8 9 9 14 0 7 8 7 20 19
6 14 10 9 7 0 13 5 25 13
12 5 21 10 8 13 0 23 21 18
13 14 8 9 7 5 23 0 18 12
11 17 27 23 20 25 21 18 0 16
18 17 12 16 19 13 18 12 16 0;
@text()=@writefor(link(i,j)|x(i,j)#GT#0:'x(',i,',',j,')=',x(i,j));
enddata
min=@sum(link:d*x);
@for(city(j):@sum(city(i)|j#ne#i:x(i,j))=1);
@for(city(i):@sum(city(j)|j#ne#i:x(i,j))=1);
@for(link(i,j)|i#ne#j#and#i#gt#1:u(i)-u(j)+10*x(i,j)<=9);
@for(link:@BIN(x));
end

  

x(1,4)=1 x(2,7)=1 x(3,2)=1 x(4,3)=1 x(5,6)=1 x(6,8)=1 x(7,5)=1 x(8,10)=1 x(9,1)=1 x(10,9)=1

1 4 3 2 7 5 6 8 10 9 1

图论中TSP问题的LINGO求解与应用的更多相关文章

  1. 图论中最优树问题的LINGO求解

    树:连通且不含圈的无向图称为树.常用T表示.树中的边称为树枝,树中度为1的顶点称为树叶. 生成树:若T是包含图G的全部顶点的子图,它又是树,则称T是G的生成树. 最小生成树:设T=(V,E1)是赋权图 ...

  2. 数学建模 TSP(旅行商问题) Lingo求解

    model: sets: cities../:level; link(cities, cities): distance, x; !距离矩阵; endsets data: distance ; end ...

  3. Tarjan在图论中的应用(三)——用Tarjan来求解2-SAT

    前言 \(2-SAT\)的解法不止一种(例如暴搜?),但最高效的应该还是\(Tarjan\). 说来其实我早就写过用\(Tarjan\)求解\(2-SAT\)的题目了(就是这道题:[2019.8.14 ...

  4. TSP旅行商问题的Hopfield求解过程

      连续型Hopfield在matlab中没有直接的工具箱,所以我们们根据Hopfield给出的连续行算法自行编写程序.本文中,以求解旅行商 问题来建立Hopfield网络,并得到解,但是该解不一定是 ...

  5. Lingo求解线性规划案例2——多阶段投资问题

     凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 某公司现有资金30万元可用于投资,5年内有下列方案可供采纳:   1号方案:在年初投资1元,2年后可收回1. ...

  6. 用Lingo求解线性规划问题

    第一步:输入目标条件和约束条件.每行以分号隔开.然后点击工具栏上的Solve按钮,或Lingo菜单下的Solve子菜单. 第二步:检查report中的结果. 默认情况下,Lingo不进行灵敏度分析. ...

  7. 【算法】关于图论中的最小生成树(Minimum Spanning Tree)详解

    本节纲要 什么是图(network) 什么是最小生成树 (minimum spanning tree) 最小生成树的算法 什么是图(network)? 这里的图当然不是我们日常说的图片或者地图.通常情 ...

  8. Prim算法和Kruskal算法(图论中的最小生成树算法)

    最小生成树在一个图中可以有多个,但是如果一个图中边的权值互不相同的话,那么最小生成树只可能存在一个,用反证法很容易就证明出来了. 当然最小生成树也是一个图中包含所有节点的权值和最低的子图. 在一个图中 ...

  9. 图论中DFS与BFS的区别、用法、详解…

    DFS与BFS的区别.用法.详解? 写在最前的三点: 1.所谓图的遍历就是按照某种次序访问图的每一顶点一次仅且一次. 2.实现bfs和dfs都需要解决的一个问题就是如何存储图.一般有两种方法:邻接矩阵 ...

随机推荐

  1. 51nod 1055:最长等差数列

    1055 最长等差数列 基准时间限制:2 秒 空间限制:262144 KB 分值: 80 难度:5级算法题  收藏  取消关注 N个不同的正整数,找出由这些数组成的最长的等差数列. 例如:1 3 5 ...

  2. QT事件处理–notify()

    转载至:https://www.deeplearn.me/349.html 一.说明 Qt 处理事件的方式之一:”继承 QApplication 并重新实现 notify()函数”.Qt 调用 QAp ...

  3. spark任务日志配置

    样例代码: public class SparkTest { private static Logger logger = Logger.getLogger(SparkTest.class); pub ...

  4. 使用docker快速体验kali linux

    环境 运行在 64位 机器 企业版的 win10 系统 下载镜像 首先搜索docker download 去官网下载docker:https://www.docker.com/products/doc ...

  5. 在Centos安装redis-孙志奇

    最近在阿里云服务器上部署redis,遇到了很多的问题,经过不懈的努力终于配置成功, 按照下面的步骤一步一步来就好了 wget http://download.redis.io/releases/red ...

  6. Django实现websocket

    django实现websocket大致上有两种方式,一种channels,一种是dwebsocket.channels依赖于redis,twisted等 一 dwebsocket 1 Django实现 ...

  7. 代码化UI设计

    最近在阅读Qt 5.9 C++开发指南,为了加深对书本上内容的理解,参照书上的讲解尝试写了一些demo,用于以后工作中查阅,如果涉及侵权请告知,实例程序samp2_3 mydialog.h #ifnd ...

  8. 02-NVIDIA Jetson TX2 通过JetPack 3.1刷机完整版(踩坑版)

    未经允许,不得擅自改动和转载 文 | 阿小庆 2018-1-20 本文继第一篇文章:01-NVIDIA Jetson TX2开箱上电显示界面 TX2 出厂时,已经自带了 Ubuntu 16.04 系统 ...

  9. 并发 ping

    参考 [root@RS2 ~]# cat .sh #!/bin/bash # --, by wwy #------------------------------------------------- ...

  10. 剑指offer_1.18_Day_2

    怠惰怠惰,好好练练了要 二维数组中查找 在一个二维数组中(每个一维数组的长度相同),每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序.请完成一个函数,输入这样的一个二维数组和一个 ...