A - Smith Numbers POJ
4937775= 3*5*5*65837
The sum of all digits of the telephone number is 4+9+3+7+7+7+5= 42,and the sum of the digits of its prime factors is equally 3+5+5+6+5+8+3+7=42. Wilansky was so amazed by his discovery that he named this kind of numbers after his brother-in-law: Smith numbers.
As this observation is also true for every prime number, Wilansky decided later that a (simple and unsophisticated) prime number is not worth being a Smith number, so he excluded them from the definition.
Wilansky published an article about Smith numbers in the Two Year College Mathematics Journal and was able to present a whole collection of different Smith numbers: For example, 9985 is a Smith number and so is 6036. However,Wilansky was not able to find a Smith number that was larger than the telephone number of his brother-in-law. It is your task to find Smith numbers that are larger than 4937775!
Input
Output
Sample Input
4937774
0
题目大意:
给你一个数,求大于这个数字并满足以下条件的最小值:
条件:数字的各个位置加起来与用质数拆分该数字后得到的数字的各个位置之和相等 4937775= 3*5*5*65837
暴力模拟就可以啦 首先要知道质数拆分,然后将得到的每个数字的各个位置相加相等。如果与原数字相等的话说明找到啦!
#include<iostream>
#include<cstdio>
using namespace std; int check(int x){//由于数字范围太大,不能打表,只能这样一步一步来
for(int i=;i*i<=x;i++){
if(x%i==) return ;
}
return ;
} int f2(int x){
int sum=;
while(x){
sum+=x%;
x=x/;
}
return sum;
}
int f(int x){
int sum=;
for(int i=;i*i<=x;i++){//拆分
if(x%i==){
int ans=;
if(i<)
{
while(x%i==){
ans++;
x=x/i;
}
sum+=i*ans;
}
else {
int s=f2(i);
while(x%i==){
ans++;
x=x/i;
}
sum+=s*ans;
}
}
}
if(x>) sum+=f2(x);
return sum;
}
int main(){
int n;
while(scanf("%d",&n)!=EOF&&n){
for(int i=n+;;i++){
if(check(i)==){
if(f2(i)==f(i)){
printf("%d\n",i);
break;
} }
}
}
return ;
}
A - Smith Numbers POJ的更多相关文章
- Smith Numbers POJ - 1142 (暴力+分治)
题意:给定一个N,求一个大于N的最小的Smith Numbers,Smith Numbers是一个合数,且分解质因数之后上质因子每一位上的数字之和 等于 其本身每一位数字之和(别的博客偷的题意) 思路 ...
- Smith Numbers POJ - 1142 暴力递归枚举
题意: 给你一个数x,把这个分解成素数之积(假设是x1*x2*x3),如果 x的每一数位的和 等于 x1每一数位的和加上x2每一数位的和加上x3每一数位的和,那么他就是题目要找的数 示例: ...
- POJ 1142 Smith Numbers(史密斯数)
Description 题目描述 While skimming his phone directory in 1982, Albert Wilansky, a mathematician of Leh ...
- poj 1142 Smith Numbers
Description While skimming his phone directory in 1982, Albert Wilansky, a mathematician of Lehigh U ...
- POJ 1142:Smith Numbers(分解质因数)
Smith Numbers Time Limit: 1000MS Memory Limit: 10000K Total Submiss ...
- Smith Numbers - PC110706
欢迎访问我的新博客:http://www.milkcu.com/blog/ 原文地址:http://www.milkcu.com/blog/archives/uva10042.html 原创:Smit ...
- poj1142 Smith Numbers
Poj1142 Smith Numbers Smith Numbers Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 13854 ...
- UVA 10042 Smith Numbers(数论)
Smith Numbers Background While skimming his phone directory in 1982, Albert Wilansky, a mathematicia ...
- Smith Numbers(分解质因数)
Smith Numbers Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 14173 Accepted: 4838 De ...
随机推荐
- 进制-Iterative-进制转换
2019-12-02 21:15:31 进制转换是计算机科学里的一个基础算法,通常可以使用如下的模版来进行计算. 下面我们来讨论一些关于进制的题目. 1271. Hexspeak 问题描述: 问题求 ...
- 使命召唤:战区国际服ID注册与登录
命召唤:战区 国际服ID注册与登录 1.下面官网网页注册国际服账号.2登录游戏.就这么简单.(前提是网咖.电竞宾馆.已经提供好游戏) !!!注意 如果是网吧网咖电竞宾馆,用其给你提供的游戏图标进入游 ...
- Notepad++正则表达式查找替换文本中文字符
测试需求 测试工具中xml配置文件中注释字段包含中文字符,在Win10系统下使用工具中偶尔会出现中文乱码导致配置文件失效.解决方法将配置文件中的中文注释换成英文注释或者直接替换删除.如何将配置文件中的 ...
- n次方
1.问题描述 计算 an 2.算法分析 先将 n 变一变,寻找新的计算路径.预处理就是变治法的根本. 如果单纯循环执行 n 次相乘,那么时间复杂度为 O(n).可以利用二进制幂大大改进效率. 主要思路 ...
- 武林高手?敏捷开发,唯velocity取胜
去年学习软件工程教材,初识敏捷开发.目前所在的团队,也是使用敏捷开发方式.今天读了这篇文章,对于这段时间的效率有所警醒.其次,个人认同文章中的用户故事,结对编程思想. 文章援引:http://gitb ...
- 【JavaScript】要点知识的个人总结(1)
米娜桑,哦哈哟~ 该篇章主要基于链接中的参考内容和代码测试得出的结论,面向具有一定基础的前端开发者.如有错误,请指出与包涵. 原型链的解释 https://juejin.im/post/5aa78fe ...
- 403 Invalid CORS request 跨域问题解决
这里使用springMVC自带的CORS解决跨域问题 什么是跨域问题 1.请求地址与当前地址不相同 2.端口号不相同 技术有限端口号不同还未发现 3.二级域名不相同 出现这种问题如何解决有很多种方法, ...
- SQL实战(四)
一. 题目描述 将employees表的所有员工的last_name和first_name拼接起来作为Name,中间以一个空格区分CREATE TABLE `employees` ( `emp_no` ...
- Servlet---request内置对象
Request 对象: 问题: 浏览器发起请求到服务器,会遵循HTTP协议将请求数据发送给服务器. 那么服务器接受到请求的数据改怎么存储呢?不但要存,而且要保证完成性. 解决: 使用对象进行存储,服务 ...
- Python学习-第三节part1: 关于函数
一 为何要用函数之不用函数的问题 #1.代码的组织结构不清晰,可读性差 #2.遇到重复的功能只能重复编写实现代码,代码冗余 #3.功能需要扩展时,需要找出所有实现该功能的地方修改之,无法统一管理且维护 ...