树是一种比较高级的基础数据结构,由n个有限节点组成的具有层次关系的集合。

树的定义:

  1. 有节点间的层次关系,分为父节点和子节点。
  2. 有唯一一个根节点,该根节点没有父节点。
  3. 除了根节点,每个节点有且只有一个父节点。
  4. 每一个节点本身以及它的后代也是一棵树,是一个递归的结构。
  5. 没有后代的节点称为叶子节点,没有节点的树称为空树。

二叉树:每个节点最多只有两个儿子节点的树。

满二叉树:叶子节点与叶子节点之间的高度差为0的二叉树,即整颗树是满的,树呈满三角形结构。在国外的定义,非叶子节点儿子都是满的树就是满二叉树。我们以国内为准。

完全二叉树:完全二叉树是由满二叉树而引出来的,设二叉树的深度为k,除第k层外,其他各层的节点数都达到最大值,且第k层所有的节点都连续集中在最左边。

树根据儿子节点的多寡,有二叉树,三叉树,四叉树等,我们这里主要介绍二叉树。

一、二叉树的数学特征

  1. 高度为h≥0的二叉树至少有h+1个结点,比如最不平衡的二叉树就是退化的线性链表结构,所有的节点都只有左儿子节点,或者所有的节点都只有右儿子节点。
  2. 高度为h≥0的二叉树至多有2^h+1个节点,比如这颗树是满二叉树。
  3. 含有n≥1个结点的二叉树的高度至多为n-1,由1退化的线性链表可以反推。
  4. 含有n≥1个结点的二叉树的高度至少为logn,由2满二叉树可以反推。
  5. 在二叉树的第i层,至多有2^(i-1)个节点,比如该层是满的。

二、二叉树的实现

二叉树可以使用链表来实现。如下:

// 二叉树
type TreeNode struct {
Data string // 节点用来存放数据
Left *TreeNode // 左子树
Right *TreeNode // 右字树
}

当然,数组也可以用来表示二叉树,一般用来表示完全二叉树。

对于一颗有n个节点的完全二叉树,从上到下,从左到右进行序号编号,对于任一个节点,编号i=0表示树根节点,编号i的节点的左右儿子节点编号分别为:2i+1,2i+2,父亲节点编号为:i/2,整除操作去掉小数

如图是一颗完全二叉树,数组的表示:

我们一般使用二叉树来实现查找的功能,所以树节点结构体里存放数据的Data字段。

三、遍历二叉树

构建一颗树后,我们希望遍历它,有四种遍历方法:

  1. 先序遍历:先访问根节点,再访问左子树,最后访问右子树。
  2. 后序遍历:先访问左子树,再访问右子树,最后访问根节点。
  3. 中序遍历:先访问左子树,再访问根节点,最后访问右子树。
  4. 层次遍历:每一层从左到右访问每一个节点。

先序,后序和中序遍历较简单,代码如下:

package main

import (
"fmt"
) // 二叉树
type TreeNode struct {
Data string // 节点用来存放数据
Left *TreeNode // 左子树
Right *TreeNode // 右字树
} // 先序遍历
func PreOrder(tree *TreeNode) {
if tree == nil {
return
} // 先打印根节点
fmt.Print(tree.Data, " ")
// 再打印左子树
PreOrder(tree.Left)
// 再打印右字树
PreOrder(tree.Right)
} // 中序遍历
func MidOrder(tree *TreeNode) {
if tree == nil {
return
} // 先打印左子树
MidOrder(tree.Left)
// 再打印根节点
fmt.Print(tree.Data, " ")
// 再打印右字树
MidOrder(tree.Right)
} // 后序遍历
func PostOrder(tree *TreeNode) {
if tree == nil {
return
} // 先打印左子树
MidOrder(tree.Left)
// 再打印右字树
MidOrder(tree.Right)
// 再打印根节点
fmt.Print(tree.Data, " ")
} func main() {
t := &TreeNode{Data: "A"}
t.Left = &TreeNode{Data: "B"}
t.Right = &TreeNode{Data: "C"}
t.Left.Left = &TreeNode{Data: "D"}
t.Left.Right = &TreeNode{Data: "E"}
t.Right.Left = &TreeNode{Data: "F"} fmt.Println("先序排序:")
PreOrder(t)
fmt.Println("\n中序排序:")
MidOrder(t)
fmt.Println("\n后序排序")
PostOrder(t)
}

表示将以下结构的树进行遍历:

结果如下:

先序排序:
A B D E C F
中序排序:
D B E A F C
后序排序
D B E F C A

层次遍历较复杂,用到一种名叫广度遍历的方法,需要使用辅助的先进先出的队列。

  1. 先将树的根节点放入队列。
  2. 从队列里面remove出节点,先打印节点值,如果该节点有左子树节点,左子树入栈,如果有右子树节点,右子树入栈。
  3. 重复2,直到队列里面没有元素。

核心逻辑如下:

func LayerOrder(treeNode *TreeNode) {
if treeNode == nil {
return
} // 新建队列
queue := new(LinkQueue)
// 根节点先入队
queue.Add(treeNode)
for queue.size > 0 {
// 不断出队列
element := queue.Remove() // 先打印节点值
fmt.Print(element.Data, " ") // 左子树非空,入队列
if element.Left != nil {
queue.Add(element.Left)
} // 右子树非空,入队列
if element.Right != nil {
queue.Add(element.Right)
}
}
}

完整代码:

package main

import (
"fmt"
"sync"
) // 二叉树
type TreeNode struct {
Data string // 节点用来存放数据
Left *TreeNode // 左子树
Right *TreeNode // 右字树
} func LayerOrder(treeNode *TreeNode) {
if treeNode == nil {
return
} // 新建队列
queue := new(LinkQueue) // 根节点先入队
queue.Add(treeNode)
for queue.size > 0 {
// 不断出队列
element := queue.Remove() // 先打印节点值
fmt.Print(element.Data, " ") // 左子树非空,入队列
if element.Left != nil {
queue.Add(element.Left)
} // 右子树非空,入队列
if element.Right != nil {
queue.Add(element.Right)
}
}
} // 链表节点
type LinkNode struct {
Next *LinkNode
Value *TreeNode
} // 链表队列,先进先出
type LinkQueue struct {
root *LinkNode // 链表起点
size int // 队列的元素数量
lock sync.Mutex // 为了并发安全使用的锁
} // 入队
func (queue *LinkQueue) Add(v *TreeNode) {
queue.lock.Lock()
defer queue.lock.Unlock() // 如果栈顶为空,那么增加节点
if queue.root == nil {
queue.root = new(LinkNode)
queue.root.Value = v
} else {
// 否则新元素插入链表的末尾
// 新节点
newNode := new(LinkNode)
newNode.Value = v // 一直遍历到链表尾部
nowNode := queue.root
for nowNode.Next != nil {
nowNode = nowNode.Next
} // 新节点放在链表尾部
nowNode.Next = newNode
} // 队中元素数量+1
queue.size = queue.size + 1
} // 出队
func (queue *LinkQueue) Remove() *TreeNode {
queue.lock.Lock()
defer queue.lock.Unlock() // 队中元素已空
if queue.size == 0 {
panic("over limit")
} // 顶部元素要出队
topNode := queue.root
v := topNode.Value // 将顶部元素的后继链接链上
queue.root = topNode.Next // 队中元素数量-1
queue.size = queue.size - 1 return v
} // 队列中元素数量
func (queue *LinkQueue) Size() int {
return queue.size
} func main() {
t := &TreeNode{Data: "A"}
t.Left = &TreeNode{Data: "B"}
t.Right = &TreeNode{Data: "C"}
t.Left.Left = &TreeNode{Data: "D"}
t.Left.Right = &TreeNode{Data: "E"}
t.Right.Left = &TreeNode{Data: "F"} fmt.Println("\n层次排序")
LayerOrder(t)
}

输出:

层次排序
A B C D E F

系列文章入口

我是陈星星,欢迎阅读我亲自写的 数据结构和算法(Golang实现),文章首发于 阅读更友好的GitBook

数据结构和算法(Golang实现)(17)常见数据结构-树的更多相关文章

  1. 数据结构和算法(Golang实现)(11)常见数据结构-前言

    常见数据结构及算法 数据结构主要用来组织数据,也作为数据的容器,载体. 各种各样的算法,都需要使用一定的数据结构来组织数据. 常见的典型数据结构有: 链表 栈和队列 树 图 上述可以延伸出各种各样的术 ...

  2. 数据结构和算法(Golang实现)(12)常见数据结构-链表

    链表 讲数据结构就离不开讲链表.因为数据结构是用来组织数据的,如何将一个数据关联到另外一个数据呢?链表可以将数据和数据之间关联起来,从一个数据指向另外一个数据. 一.链表 定义: 链表由一个个数据节点 ...

  3. 数据结构和算法(Golang实现)(13)常见数据结构-可变长数组

    可变长数组 因为数组大小是固定的,当数据元素特别多时,固定的数组无法储存这么多的值,所以可变长数组出现了,这也是一种数据结构.在Golang语言中,可变长数组被内置在语言里面:切片slice. sli ...

  4. 数据结构和算法(Golang实现)(14)常见数据结构-栈和队列

    栈和队列 一.栈 Stack 和队列 Queue 我们日常生活中,都需要将物品排列,或者安排事情的先后顺序.更通俗地讲,我们买东西时,人太多的情况下,我们要排队,排队也有先后顺序,有些人早了点来,排完 ...

  5. 数据结构和算法(Golang实现)(15)常见数据结构-列表

    列表 一.列表 List 我们又经常听到列表 List数据结构,其实这只是更宏观的统称,表示存放数据的队列. 列表List:存放数据,数据按顺序排列,可以依次入队和出队,有序号关系,可以取出某序号的数 ...

  6. 数据结构和算法(Golang实现)(16)常见数据结构-字典

    字典 我们翻阅书籍时,很多时候都要查找目录,然后定位到我们要的页数,比如我们查找某个英文单词时,会从英语字典里查看单词表目录,然后定位到词的那一页. 计算机中,也有这种需求. 一.字典 字典是存储键值 ...

  7. 数据结构和算法(Golang实现)(25)排序算法-快速排序

    快速排序 快速排序是一种分治策略的排序算法,是由英国计算机科学家Tony Hoare发明的, 该算法被发布在1961年的Communications of the ACM 国际计算机学会月刊. 注:A ...

  8. 数据结构和算法(Golang实现)(1)简单入门Golang-前言

    数据结构和算法在计算机科学里,有非常重要的地位.此系列文章尝试使用 Golang 编程语言来实现各种数据结构和算法,并且适当进行算法分析. 我们会先简单学习一下Golang,然后进入计算机程序世界的第 ...

  9. 数据结构和算法(Golang实现)(2)简单入门Golang-包、变量和函数

    包.变量和函数 一.举个例子 现在我们来建立一个完整的程序main.go: // Golang程序入口的包名必须为 main package main // import "golang&q ...

随机推荐

  1. 如何查看QQ坦白说来自谁

    近两天QQ新功能的坦白说开始席卷朋友圈,一个醒目的小窗就这样明晃晃出现在QQ对话列表"有人对你说:--"下面我们就来整理一下怎么看到是谁给你发送的坦白说呢? 方法一: 此方法仅限于 ...

  2. pycharm+keras+yolo3的使用和自选模型的训练中遇到的坑

    1.TensorFlow版本的问题 报错:RuntimeError: `get_session` is not available when using TensorFlow 2.0. 解决办法:这个 ...

  3. jvm 性能调优工具之 jps 命令详解

    JPS名称:jps - Java Virtual Machine Process Status Tool命令用法:jps [options] [hostid] options:命令选项,用来对输出格式 ...

  4. python关于字典如何格式化地写入文件之中

    1.python关于字典如何式化地写入文件之中 如何写入:https://blog.csdn.net/qq_15642411/article/details/79943741 (推荐使用json包) ...

  5. List集合概述和特点

    List集合概述 有序集合(也称序列)用户可以精确控制列表的每一个元素的位置插入,用户可以通过整数索引访问元素,并搜索列表中的元素 与set集合不同,列表通常允许重复的元素 List集合的特点 有序: ...

  6. angularjs中$parse的用法

    转载自:https://umur.blog/2014/02/25/advanced-angular-parse/ 高级Angular:$ parse 如果你想加强你的AngularJS知识,$ par ...

  7. 动态规划(Dynamic Programming)算法与LC实例的理解

    动态规划(Dynamic Programming)算法与LC实例的理解 希望通过写下来自己学习历程的方式帮助自己加深对知识的理解,也帮助其他人更好地学习,少走弯路.也欢迎大家来给我的Github的Le ...

  8. FaceBook 发布星际争霸最大 AI 数据集

    简介 我们刚发布了最大的星际争霸:Brood War 重播数据集,有 65646 个游戏.完整的数据集经过压缩之后有 365 GB,1535 million 帧,和 496 million 操作动作. ...

  9. HDU - 2444 二分图最大匹配 之 判断二分图+匈牙利算法

    题意:第一行给出数字n个学生,m条关系,关系表示a与b认识,判断给定数据是否可以构成二分图,如果可以,要两个互相认识的人住一个房间,问最大匹配数(也就是房间需要的最小数量) 思路:要看是否可以构成二分 ...

  10. Oracle 11g服务端的安装和配置

    1.双击Oracle11g_database安装目录下的Setup.exe. 2.选择“基本安装”,设置“安装位置”,填写“数据库名”和“口令”,点击“下一步”. 3.点击“下一步”. 4.一般会出现 ...