方法1: 直接使用数据库提供的SQL语句

  • 语句样式: MySQL中,可用如下方法: SELECT * FROM 表名称 LIMIT M,N

  • 适应场景: 适用于数据量较少的情况(元组百/千级)

  • 原因/缺点: 全表扫描,速度会很慢 且 有的数据库结果集返回不稳定(如某次返回1,2,3,另外的一次返回2,1,3). Limit限制的是从结果集的M位置处取出N条输出,其余抛弃.

方法2: 建立主键或唯一索引, 利用索引(假设每页10条)

  • 语句样式: MySQL中,可用如下方法: SELECT * FROM 表名称 WHERE id_pk > (pageNum*10) LIMIT M

  • 适应场景: 适用于数据量多的情况(元组数上万)

  • 原因: 索引扫描,速度会很快. 有朋友提出: 因为数据查询出来并不是按照pk_id排序的,所以会有漏掉数据的情况,只能方法3

方法3: 基于索引再排序

  • 语句样式: MySQL中,可用如下方法: SELECT * FROM 表名称 WHERE id_pk > (pageNum*10) ORDER BY id_pk ASC LIMIT M

  • 适应场景: 适用于数据量多的情况(元组数上万). 最好ORDER BY后的列对象是主键或唯一所以,使得ORDERBY操作能利用索引被消除但结果集是稳定的(稳定的含义,参见方法1)

  • 原因: 索引扫描,速度会很快. 但MySQL的排序操作,只有ASC没有DESC(DESC是假的,未来会做真正的DESC,期待...).

方法4: 基于索引使用prepare

第一个问号表示pageNum,第二个?表示每页元组数

  • 语句样式: MySQL中,可用如下方法: PREPARE stmt_name FROM SELECT * FROM 表名称 WHERE id_pk > (?* ?) ORDER BY id_pk ASC LIMIT M

  • 适应场景: 大数据量

  • 原因: 索引扫描,速度会很快. prepare语句又比一般的查询语句快一点。

方法5: 利用MySQL支持ORDER操作可以利用索引快速定位部分元组,避免全表扫描

比如: 读第1000到1019行元组(pk是主键/唯一键).

SELECT * FROM your_table WHERE pk>=1000 ORDER BY pk ASC LIMIT 0,20

方法6: 利用"子查询/连接+索引"快速定位元组的位置,然后再读取元组.

比如(id是主键/唯一键,蓝色字体时变量)

利用子查询示例:

SELECT * FROM your_table WHERE id <=(SELECT id FROM your_table ORDER BY id desc LIMIT ($page-1)*$pagesize ORDER BY id descLIMIT $pagesize 

利用连接示例:

SELECT * FROM your_table AS t1JOIN (SELECT id FROM your_table ORDER BY id desc LIMIT ($page-1)*$pagesize AS t2WHERE t1.id <= t2.id ORDER BY t1.id desc LIMIT $pagesize;

mysql大数据量使用limit分页,随着页码的增大,查询效率越低下。

测试实验

1.   直接用limit start, count分页语句, 也是我程序中用的方法:

select * from product limit start, count 

当起始页较小时,查询没有性能问题,我们分别看下从10, 100, 1000, 10000开始分页的执行时间(每页取20条)。

如下:

select * from product limit 10, 20
   0.016秒
select * from product limit 100, 20
   0.016秒
select * from product limit 1000, 20
   0.047秒
select * from product limit 10000, 20
   0.094秒

我们已经看出随着起始记录的增加,时间也随着增大, 这说明分页语句limit跟起始页码是有很大关系的,那么我们把起始记录改为40w看下(也就是记录的一般左右)

select * from product limit 400000, 20
   3.229秒 

再看我们取最后一页记录的时间

select * from product limit 866613, 20
   37.44秒 

像这种分页最大的页码页显然这种时间是无法忍受的。

从中我们也能总结出两件事情:

  1. limit语句的查询时间与起始记录的位置成正比

  2. mysql的limit语句是很方便,但是对记录很多的表并不适合直接使用。

2.   对limit分页问题的性能优化方法

利用表的覆盖索引来加速分页查询

我们都知道,利用了索引查询的语句中如果只包含了那个索引列(覆盖索引),那么这种情况会查询很快。

因为利用索引查找有优化算法,且数据就在查询索引上面,不用再去找相关的数据地址了,这样节省了很多时间。另外Mysql中也有相关的索引缓存,在并发高的时候利用缓存就效果更好了。

在我们的例子中,我们知道id字段是主键,自然就包含了默认的主键索引。现在让我们看看利用覆盖索引的查询效果如何。

这次我们之间查询最后一页的数据(利用覆盖索引,只包含id列),如下:

select id from product limit 866613, 20
 0.2秒 

相对于查询了所有列的37.44秒,提升了大概100多倍的速度

那么如果我们也要查询所有列,有两种方法,一种是id>=的形式,另一种就是利用join,看下实际情况:

SELECT * FROM product WHERE ID > =(select id from product limit 866613, 1) limit 20

查询时间为0.2秒!

另一种写法

SELECT * FROM product a JOIN (select id from product limit 866613, 20) b ON a.ID = b.id

查询时间也很短!

3.  复合索引优化方法

MySql 性能到底能有多高?MySql 这个数据库绝对是适合dba级的高手去玩的,一般做一点1万篇新闻的小型系统怎么写都可以,用xx框架可以实现快速开发。可是数据量到了10万,百万至千万,他的性能还能那么高吗?一点小小的失误,可能造成整个系统的改写,甚至更本系统无法正常运行!好了,不那么多废话了。

用事实说话,看例子:

数据表 collect ( id, title ,info ,vtype) 就这4个字段,其中 title 用定长,info 用text, id 是逐渐,vtype是tinyint,vtype是索引。这是一个基本的新闻系统的简单模型。现在往里面填充数据,填充10万篇新闻。最后collect 为 10万条记录,数据库表占用硬1.6G。

OK ,看下面这条sql语句:

select id,title from collect limit 1000,10;

很快;基本上0.01秒就OK,再看下面的

select id,title from collect limit 90000,10;

从9万条开始分页,结果?

8-9秒完成,my god 哪出问题了?其实要优化这条数据,网上找得到答案。看下面一条语句:

select id from collect order by id limit 90000,10;

很快,0.04秒就OK。 为什么?因为用了id主键做索引当然快。网上的改法是:

select id,title from collect where id>=(select id from collect order by id limit 90000,1) limit 10;

这就是用了id做索引的结果。可是问题复杂那么一点点,就完了。看下面的语句

select id from collect where vtype=1 order by id limit 90000,10;

很慢,用了8-9秒!

到了这里我相信很多人会和我一样,有崩溃感觉!vtype 做了索引了啊?怎么会慢呢?vtype做了索引是不错,你直接

select id from collect where vtype=1 limit 1000,10;

是很快的,基本上0.05秒,可是提高90倍,从9万开始,那就是0.05*90=4.5秒的速度了。和测试结果8-9秒到了一个数量级。

从这里开始有人提出了分表的思路,这个和dis #cuz 论坛是一样的思路。思路如下:

建一个索引表: t (id,title,vtype) 并设置成定长,然后做分页,分页出结果再到 collect 里面去找info 。 是否可行呢?实验下就知道了。

10万条记录到 t(id,title,vtype) 里,数据表大小20M左右。用

select id from t where vtype=1 order by id limit 90000,10;

很快了。基本上0.1-0.2秒可以跑完。为什么会这样呢?我猜想是因为collect 数据太多,所以分页要跑很长的路。limit 完全和数据表的大小有关的。其实这样做还是全表扫描,只是因为数据量小,只有10万才快。OK, 来个疯狂的实验,加到100万条,测试性能。加了10倍的数据,马上t表就到了200多M,而且是定长。还是刚才的查询语句,时间是0.1-0.2秒完成!分表性能没问题?

错!因为我们的limit还是9万,所以快。给个大的,90万开始

select id from t where vtype=1 order by id limit 900000,10;

看看结果,时间是1-2秒!why ?

分表了时间还是这么长,非常之郁闷!有人说定长会提高limit的性能,开始我也以为,因为一条记录的长度是固定的,mysql 应该可以算出90万的位置才对啊?可是我们高估了mysql 的智能,他不是商务数据库,事实证明定长和非定长对limit影响不大?怪不得有人说discuz到了100万条记录就会很慢,我相信这是真的,这个和数据库设计有关!

难道MySQL 无法突破100万的限制吗???到了100万的分页就真的到了极限?

答案是: NO 为什么突破不了100万是因为不会设计mysql造成的。下面介绍非分表法,来个疯狂的测试!一张表搞定100万记录,并且10G 数据库,如何快速分页!

好了,我们的测试又回到 collect表,开始测试结论是:

30万数据,用分表法可行,超过30万他的速度会慢道你无法忍受!当然如果用分表+我这种方法,那是绝对完美的。但是用了我这种方法后,不用分表也可以完美解决!

答案就是:复合索引! 有一次设计mysql索引的时候,无意中发现索引名字可以任取,可以选择几个字段进来,这有什么用呢?

开始的

select id from collect order by id limit 90000,10; 

这么快就是因为走了索引,可是如果加了where 就不走索引了。抱着试试看的想法加了 search(vtype,id) 这样的索引。

然后测试

select id from collect where vtype=1 limit 90000,10; 

非常快!0.04秒完成!

再测试:

select id ,title from collect where vtype=1 limit 90000,10; 

非常遗憾,8-9秒,没走search索引!

再测试:search(id,vtype),还是select id 这个语句,也非常遗憾,0.5秒。

综上:如果对于有where 条件,又想走索引用limit的,必须设计一个索引,将where 放第一位,limit用到的主键放第2位,而且只能select 主键!

完美解决了分页问题了。可以快速返回id就有希望优化limit , 按这样的逻辑,百万级的limit 应该在0.0x秒就可以分完。看来mysql 语句的优化和索引时非常重要的!

MySQL 百万级数据量分页查询方法及其优化的更多相关文章

  1. MySQL大数据量分页查询方法及其优化

    MySQL大数据量分页查询方法及其优化   ---方法1: 直接使用数据库提供的SQL语句---语句样式: MySQL中,可用如下方法: SELECT * FROM 表名称 LIMIT M,N---适 ...

  2. 【1】MySQL大数据量分页查询方法及其优化

    ---方法1: 直接使用数据库提供的SQL语句---语句样式: MySQL中,可用如下方法: SELECT * FROM 表名称 LIMIT M,N---适应场景: 适用于数据量较少的情况(元组百/千 ...

  3. MySQL 千万 级数据量根据(索引)优化 查询 速度

    一.索引的作用 索引通俗来讲就相当于书的目录,当我们根据条件查询的时候,没有索引,便需要全表扫描,数据量少还可以,一旦数据量超过百万甚至千万,一条查询sql执行往往需要几十秒甚至更多,5秒以上就已经让 ...

  4. Mysql系列(五)—— 分页查询及问题优化

    一.用法 在Mysql中分页查询使用关键字limit.limit的语法如下: SELECT * FROM tbl LIMIT 5,10; # Retrieve rows 6-15 limit关键字带有 ...

  5. (转载)MYSQL千万级数据量的优化方法积累

    转载自:http://blog.sina.com.cn/s/blog_85ead02a0101csci.html MYSQL千万级数据量的优化方法积累 1.分库分表 很明显,一个主表(也就是很重要的表 ...

  6. MySQL分页查询的性能优化

    MySQL limit分页查询的性能优化 Mysql的分页查询十分简单,但是当数据量大的时候一般的分页就吃不消了. 传统分页查询:SELECT c1,c2,cn… FROM table LIMIT n ...

  7. mysql处理大数据量的查询速度究竟有多快和能优化到什么程度

    mysql处理大数据量的查询速度究竟有多快和能优化到什么程度 深圳-ftx(1433725026) 18:10:49  mysql有没有排名函数啊 横瓜(601069289) 18:13:06  无 ...

  8. 什么时候出现死锁,如何解决?mysql 引擎? 多个like or 查询sql如何优化?什么是常量池?for条件执行顺序

    1. 什么时候出现死锁,如何解决?mysql 引擎? 多个like or 查询sql如何优化? 资源竞争导致死锁,比如A B 同时操作两条记录,并等待对方释放锁. 优化sql, 加缓存,主从(如读写分 ...

  9. MySQL百万级数据分页查询及优化

    方法1: 直接使用数据库提供的SQL语句 语句样式: MySQL中,可用如下方法: SELECT * FROM 表名称 LIMIT M,N 适应场景: 适用于数据量较少的情况(元组百/千级) 原因/缺 ...

随机推荐

  1. Java实现 LeetCode 524 通过删除字母匹配到字典里最长单词(又是一道语文题)

    524. 通过删除字母匹配到字典里最长单词 给定一个字符串和一个字符串字典,找到字典里面最长的字符串,该字符串可以通过删除给定字符串的某些字符来得到.如果答案不止一个,返回长度最长且字典顺序最小的字符 ...

  2. Java实现 LeetCode 50 Pow(x,n)

    50. Pow(x, n) 实现 pow(x, n) ,即计算 x 的 n 次幂函数. 示例 1: 输入: 2.00000, 10 输出: 1024.00000 示例 2: 输入: 2.10000, ...

  3. 第五届蓝桥杯C++B组国(决)赛真题

    解题代码部分来自网友,如果有不对的地方,欢迎各位大佬评论 题目1.年龄巧合 小明和他的表弟一起去看电影,有人问他们的年龄.小明说:今年是我们的幸运年啊.我出生年份的四位数字加起来刚好是我的年龄.表弟的 ...

  4. Java实现第九届蓝桥杯小朋友崇拜圈

    小朋友崇拜圈 题目描述 班里N个小朋友,每个人都有自己最崇拜的一个小朋友(也可以是自己). 在一个游戏中,需要小朋友坐一个圈, 每个小朋友都有自己最崇拜的小朋友在他的右手边. 求满足条件的圈最大多少人 ...

  5. Java实现第十届蓝桥杯特别数的和

    试题 F: 特别数的和 时间限制: 1.0s 内存限制: 512.0MB 本题总分:15 分 [问题描述] 小明对数位中含有 2.0.1.9 的数字很感兴趣(不包括前导 0),在 1 到 40 中这样 ...

  6. java实现第七届蓝桥杯冰雹数

    题目8.冰雹数 题目描述 任意给定一个正整数N, 如果是偶数,执行: N / 2 如果是奇数,执行: N * 3 + 1 生成的新的数字再执行同样的动作,循环往复. 通过观察发现,这个数字会一会儿上升 ...

  7. JSP基础知识点(转传智)

    一.JSP概述    1.JSP:Java Server Pages(运行在服务器端的页面).就是Servlet.    学习JSP学好的关键:时刻联想到Servlet即可.    2.JSP的原理  ...

  8. OAuth + Security - 5 - Token存储升级(数据库、Redis)

    PS:此文章为系列文章,建议从第一篇开始阅读. 在我们之前的文章中,我们当时获取到Token令牌时,此时的令牌时存储在内存中的,这样显然不利于我们程序的扩展,所以为了解决这个问题,官方给我们还提供了其 ...

  9. 温故知新-多线程-深入刨析park、unpark

    文章目录 摘要 park.unpark 看一下hotspot实现 参考 你的鼓励也是我创作的动力 Posted by 微博@Yangsc_o 原创文章,版权声明:自由转载-非商用-非衍生-保持署名 | ...

  10. 基于 abp vNext 和 .NET Core 开发博客项目 - Blazor 实战系列(三)

    系列文章 基于 abp vNext 和 .NET Core 开发博客项目 - 使用 abp cli 搭建项目 基于 abp vNext 和 .NET Core 开发博客项目 - 给项目瘦身,让它跑起来 ...