【翻译】如何使用 OpenVINO 来优化 OpenCV
本文翻译自 Vishwesh Shrimali 的 "Using OpenVINO with OpenCV"
原文链接: https://www.learnopencv.com/using-openvino-with-opencv/
翻译:coneypo,working in Intel for IoT,有问题或者建议欢迎留言交流
在这篇文章中,我们会介绍如何利用 Intel 的 OpenVINO 软件包来,发挥 OpenCV 中 Deep Neural Network (DNN) / 深度神经网络 模块的的最大性能;
我们也对 CPU 上 OpenCV 和其他深度学习库的性能进行了比较;
OpenCV 中基于 DNN 实现的模型,在很多深度学习任务中,如分类,目标检测,目标追踪和姿态估计,都表现出色;
我们会在这篇文章中探究,是否可能通过 Intel OpenVINO + OpenCV 这样的组合来进行加速;
0. 目录
1. 训练和推理
在开始介绍之前,我们要强调这篇文章专注于 Speeding up inference / 加快推理 而不是训练;让我们来看看两者区别:
1. Training / 训练
把深度神经网路视为一个有很多 knobs (parameters) / 旋钮 的黑盒,当旋钮的设置是正确的时候,神经网络就会比较高可能性的给出正确答案;
训练就是来给网络投喂百万级别的训练数据点,以至于神经网络可以按部就班的调整这些旋钮,使得接近正确值;
这种百万级别的数据处理经常是通过 GPU 来进行运算的;
当前 OpenCV 没有提供训练一个 DNN 的方法,然而你可以利用比如 Tensorflow, MxNet, Caffe 等等框架来进行 DNN 模型的训练,然后在你的代码里导入;
2. Inference / 推理
一旦网络训练完成,就可以输入新的数据来获取输出;使用一个训练好的模型,进行输入输出的过程,就叫做 inference / 推理;
一个推理引擎会将输入的数据通过神经网络产生输出结果,这里有很多优化方式来加速推理过程;
比如一个高效的推理引擎可以进行神经网络的 pruning / 修剪,将多个 Layers 融合到一步计算过程;
如果硬件支持 16-bit 浮点数运算 (2倍于 32-bit 浮点数运算),一个推理引擎会提高两倍推理速度,而且不会丢失精度,这种方式称之为 quantization / 量化;
2. OpenVINO Toolkit 介绍
OpenVINO 代表 Open Visual Inferencing and Neural Network Optimization / 开放视觉推理和神经网络优化;
正如 OpenVINO 名称所描述,OpenVINO 被设计用来给网络加速,在视觉推理任务中,比如图像分类和目标检测;
几乎所有用来解决视觉任务的 DNN 是 Convolutional Neural Networks (CNN) / 卷积神经网络;
OpenVINO 对于特定的硬件有特定的硬件加速方式来加速计算过程;
2.1 为什么使用 OpenVINO?
如果你 AI 新入门,或者对于 AI 不是很了解,你会发现这块会很有意思;
当我们想起 AI,我们经常会想起一些公司,比如 Google, Facebook, Amazon, IBM, Baidu 等等;
确实他们推动了算法的发展,但是 AI 不仅在 Training / 训练 上对于算力要求高,在 Inferencing / 推理 的时候对于资源的要求也高;
因此,我们在 AI 兴起的时候,也应该去关注一些硬件公司;
Convolutional Neural Networks (CNN) / 卷积神经网络 经常在 GPU 上进行训练;
NVIDIA 能够提供几乎最好的的硬件 GPU,与此同时软件上面使用 CUDA 和 cuDNN 进行深度学习;
NVIDIA 几乎垄断了深度学习的市场,当训练模型的时候;
然而 GPU 过于昂贵,往往在推理的时候也是不需要的;事实上,大多数的推理是在 CPU 上进行的;
比如 Dropbox 使用 CPU farm 来进行文档的 OCR;
在低成本的设备上进行深度学习,GPU 往往是开销最大;比如你几乎不可能花费几百刀去买一个 GPU 去给一个监控摄像头;
这些小设备,比如监控摄像头或者树莓派,经常被称为 Edge devices / 边缘设备 或者 IoT devices / 物联网设备;
在推理领域,Intel 占有很大份额;除了制造 CPU,Intel 也生产继承了 GPU 的 Vision Processing Units (VPU) 和 FPGA,这些都用来做推理;
Intel 明白尽管选择很多会很好,但是这也是 AI 开发者的噩梦,因为要在不同平台上进行开发就要学习和适应不同平台的开发环境;
幸运的是,Intel 通过 OpenVINO 解决了这种问题,给 AI 开发者提供了一种 Unified Framework / 统一的框架;
OpenVINO 使得可以边缘端进行 CNN-based 深度学习推理,支持跨平台的异构执行,通过一些 OpenCV 和 OpenVX 中一些函数库和预优化的核来加速产品落地时间;
2.2 计算机视觉 Pipeline 和 OpenVINO
上面框图中,除了有最左边 Custom Code / 定制代码 实现的任务;
除此之外,你有右边两种模块:
1. CV/non-DL, 非基于深度学习的计算机视觉任务
2. DL, 基于深度学习的计算机视觉任务
首先,它会优化 OpenCV 中实现的,许多基于传统计算机视觉算法的很多 calls,然后它对于深度学习推理也有特定的优化;
我们如果将 OpenCV 和 OpenVINO 一起使用会从中受益;
3. 使用 OpenVINO 进行深度学习
这一节中,我们会介绍如何在深度学习应用中使用 OpenVINO。
3.1 训练一个深度学习模型
正如我们之前所提到过,OpenCV 或者 OpenVINO 不会给你提供训练神经网络的工具(OpenVINO 专注于 Inference 而不是 Training);
你可以通过下列任一支持的类型模型来训练神经网络,或者从 zoo 模型下载:
1. Caffe Model Zoo
2. Tensorflow Model Zoo
3. MxNet Model zoo
4. Open Neural Network Exchange (ONNX) Model zoo
3.2 优化模型和创建一个 Intermediate Representation (IR) / 中间表示
之前步骤获得的模型往往没有进行性能的优化,因此,我们利用 OpenVINO 提供的 Model Optimizer / 模型优化器, 来创建一个称之为 Intermediate Representiation (IR) / 中间表示文件 的优化模型;
IR 完全与硬件无关,只取决于神经网络的架构;
下图中展示了用 OpenVINO 部署方式和大多数深度学习框架部署方式的区别:
可以看到模型优化器通过以下机制来优化模型:
1. 对模型进行修剪:移除部分在训练时候需要的,而推理时候不需要的网络;DropOut 就是这种网络层的一个例子;
2. 融合操作:有些时候多步操作可以融合成一步,模型优化器检测到这种就会进行必要的融合;
优化过程结束后会生成一个 IR model / 中间表示模型,模型可以被分成两部分:
1. model.xml: XML 文件包含网络架构;
2. model.bin: bin 文件包含 Weights / 权重 和 Biases / 误差
3.3 OpenVINO 推理引擎: 硬件特殊优化
IR 模型与硬件无关,但是 OpenVINO 通过 Inference Engine plugin / 推理引擎插件 在特定的硬件上进行优化;
这个 Plugin 在所有 Intel 的硬件上 (GPUs, CPUs, VPUs, FPGSs) 都可以获得:
3.4 OpenVINO 和 OpenCV
尽管 OpenCV 的 DNN 已经被高度优化,通过推理引擎我们可以进一步提高性能;
下图中展示了使用 OpenCV DNN 的两种方式;如果在您的平台上可以使用,我们高度推荐 OpenVINO + OpenCV 的组合;
4. Linux 中安装 OpenVINO Toolkit
这一节我们会介绍如何在 Linux 中安装和测试 OpenVINO;
Windows 中的 Openvino 安装可以参考 Intel’s website.
4.1 OpenVINO Toolkit 安装
1. 首先去 OpenVINO Toolkit Download page 注册并下载适合你系统的正确版本,这里我们介绍 Linux 系统中的安装:
2. 你会下载下来如 “l_openvino_toolkit_p_2020.1.023.tgz” 这样一个压缩文件,解压然后安装;
cd ~/Downloads/
tar -zxvf l_openvino_toolkit_p_2020.1.023.tgz cd l_openvino_toolkit_p_2020.1.023/
sudo ./install_openvino_dependencies.sh
sudo ./install_GUI.sh
注意: 如果你 sudo ./install_GUI.sh 的话,路径会是 "/opt/intel/openvino_2020.1.023/" 这种;
如果不是 sudo 身份安装,路径会是 "/home/user/intel/openvino_2020.1.023/";
3. 修改环境变量
vim /home/user/.bashrc
在最后一行加入
source /opt/intel/openvino_2020.1.023/bin/setupvars.sh
4. 打开一个新的 Terminal,可以看到 "OpenVINO enviroment initialized"
5. 配置模型优化器,让我们去模型优化器的路径,然后安装所需文件:
cd /opt/intel/openvino_2020.1.023/deployment_tools/model_optimizer/install_prerequisites/
sudo ./install_prerequisites.sh
4.2 测试 OpenVINO 安装
我们可以用 Image Classification demo 来测试安装:
cd /opt/intel/openvino_2020.1.023/deployment_tools/demo/
sudo ./demo_squeezenet_download_convert_run.sh
可以看到 "Demo completed successfully":
还可以去跑 Inference Pipepline demo:
sudo ./demo_security_barrier_camera.sh
可以看到输出的检测结果:
5. 使用 OpenCV 和 OpenVINO IE 进行图像分类
现在让我们来看看如何利用 OpenVINO IE + OpenCV 进行图像分类。
1. 首先需要加载需要的模块:
C++
#include <fstream>
#include <sstream>
#include <opencv2/dnn.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
#include <iostream> using namespace std;
using namespace cv;
using namespace cv::dnn;
Python
import numpy as np
import time
import cv2
2. 下一步指定 Caffe 的根路径和模型路径:
C++
string caffe_root = "/home/zt/caffe/";
Mat image = imread("/home/zt/caffe/examples/images/cat.jpg");
string labels_file = "/home/zt/caffe/data/ilsvrc12/synset_words.txt";
string prototxt = "/home/zt/caffe/models/bvlc_reference_caffenet/deploy.prototxt";
string model = "/home/zt/caffe/models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel";
Python
caffe_root = '/home/zt/caffe/'
image = cv2.imread('/home/zt/caffe/examples/images/cat.jpg')
labels_file = caffe_root + 'data/ilsvrc12/synset_words.txt'
prototxt = caffe_root + 'models/bvlc_reference_caffenet/deploy.prototxt'
model = caffe_root + 'models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel'
3. 接下来就是常用的图像分类代码,加了一点轻微改动;
我们会声明优先选取 cv2.dnn.DNN_BACKEEND_INFERENCE_ENGINE;
C++
// load the labels file
std::ifstream ifs(labels_file.c_str());
if (!ifs.is_open())
CV_Error(Error::StsError, "File " + labels_file + " not found");
string line;
while (std::getline(ifs, line))
{
classes.push_back(line);
}
}
blobFromImage(image, blob, , Size(, ), Scalar(,,));
cout << "[INFO] loading model..." << endl;
Net net = readNetFromCaffe(prototxt, model);
net.setPreferableBackend(DNN_BACKEND_INFERENCE_ENGINE);
net.setPreferableTarget(DNN_TARGET_CPU); // set the blob as input to the network and perform a forward-pass to
// obtain our output classification
net.setInput(blob)
preds = net.forward() double freq = getTickFrequency() / ;
std::vector<double> layersTimes;
double t = net.getPerfProfile(layersTimes) / freq;
cout << "[INFO] classification took " << t << " ms" << endl;
Python
// load the labels file
rows = open(labels_file).read().strip().split("\n")
classes = [r[r.find(" ") + 1:].split(",")[0] for r in rows] blob = cv2.dnn.blobFromImage(image,1,(224,224),(104,117,123))
print("[INFO] loading model...")
net = cv2.dnn.readNetFromCaffe(prototxt,model)
net.setPreferableBackend(cv2.dnn.DNN_BACKEND_INFERENCE_ENGINE)
net.setPreferableTarget(cv2.dnn.DNN_TARGET_CPU)
# set the blob as input to the network and perform a forward-pass to
# obtain our output classification
net.setInput(blob)
start = time.time()
preds = net.forward()
end = time.time()
print("[INFO] classification took " + str((end-start)*1000) + " ms")
就是这样,仅仅需要用 OpenVINO IE 来替代原生的 OpenCV (cv2.dnn.DNN_BACKEDN_OPENCV);
6. OpenCV 和 OpenCV + IE 的比较
这些比较任务在一台使用 OpenCV-3.4.3,只有 CPU 的 Ubuntu 16.04 AWS 机器上测试;
取100次的平均时间;
Image Classification / 图像分类
Object Detection / 目标检测
Pose Estimation / 姿态估计
从这些数据中可以很清楚的看到,使用 OpenCV + OpenVINO 可以提高计算机视觉库的性能;
# 英文版权 @ Vishwesh Shrimali
# 翻译中文版权 @ coneypo
# 转载请注明出处
【翻译】如何使用 OpenVINO 来优化 OpenCV的更多相关文章
- 【翻译】OpenVINO Pre-Trained 预训练模型介绍
OpenVINO 系列软件包预训练模型介绍 本文翻译自 Intel OpenVINO 的 "Overview of OpenVINO Toolkit Pre-Trained Models& ...
- 【翻译】借助 NeoCPU 在 CPU 上进行 CNN 模型推理优化
本文翻译自 Yizhi Liu, Yao Wang, Ruofei Yu.. 的 "Optimizing CNN Model Inference on CPUs" 原文链接: h ...
- Unity渲染优化中文翻译(三)——GPU的优化策略
如果游戏的渲染瓶颈来自于GPU 首要任务就是找出造成GPU瓶颈的因素所在,通常GPU的性能受到像素分辨率的影响,特别是在移动客户端的游戏,但是内存带宽和顶点计算的影响也需要注意.这些因素的影响都需要实 ...
- 【官网翻译】性能篇(四)为电池寿命做优化——使用Battery Historian分析电源使用情况
前言 本文翻译自“为电池寿命做优化”系列文档中的其中一篇,用于介绍如何使用Battery Historian分析电源使用情况. 中国版官网原文地址为:https://developer.android ...
- OpenCV中的SVM参数优化
OpenCV中的SVM参数优化 svm参数优化opencv SVMSVR参数优化CvSVMopencv CvSVM SVM(支持向量机)是机器学习算法里用得最多的一种算法.SVM最常用的 ...
- 开源软硬一体OpenCV AI Kit(OAK)
开源软硬一体OpenCV AI Kit(OAK) OpenCV 涵盖图像处理和计算机视觉方面的很多通用算法,是非常有力的研究工具之一,且稳居开发者最喜爱的 AI 工具/框架榜首. 1.会不会被USA禁 ...
- 漫谈CUDA优化
作者:Lawliet 翻译:仿佛若有光 前言: 几个月前,我根据 Simoncelli 2016 年的论文编写了自己的自动编码器,用于研究目的.一开始,我想使用一些流行的深度学习框架(例如 Ten ...
- jvm系列(十):如何优化Java GC「译」
本文由CrowHawk翻译,是Java GC调优的经典佳作. 本文翻译自Sangmin Lee发表在Cubrid上的"Become a Java GC Expert"系列文章的第三 ...
- 干货|人人都是翻译项目的Master
在平时的工作中,我们都会经常查阅一些英文文档来解决平时遇到的问题和拓宽视野.看到好的文章或者书籍有没有想要和小伙伴分享的冲动,那么我们一起来翻译吧- 翻译主张 "信 达 雅" .& ...
随机推荐
- ado.net DataSet
一.概念 DataSet是ADO.NET的中心概念.可以把DataSet当成内存中的数据库,DataSet是不依赖于数据库的独立数据集合.所谓独立,就是说,即使断开数据链路,或者关闭数据库,DataS ...
- hue初识
Hue Web应用的架构 Hue 是一个Web应用,用来简化用户和Hadoop集群的交互.Hue技术架构,如下图所示,从总体上来讲,Hue应用采用的是B/S架构,该web应用的后台采用python编程 ...
- 聊一聊关于MySQL的count(*)
0.背景 自从大家对于MySQL数据库的稳定性有了更高的追求后,经常有小伙伴有这样的疑问,对于count(*)这样的操作,有没有正确的姿势,或者有没有可以优化的地方? 但答案比较残酷,如果已经使用了正 ...
- 微信小程序实战(一)之仿美丽说
被美丽说少女粉吸引,就想着自己也写一个来练练手,正好最近在学习微信小程序.接下来让我们分享一下我的学习历程吧! 选题 其实纠结了好久该仿什么,看到别人都写的差不多了,自己却还没有动手,很着急,那两天一 ...
- vue+element 表单封成组件(1)
作为一名刚接触vue不到一个月的菜鸟,思想还没有从操作DOM转变为数据驱动,看vue的代码处处别扭.组里为了让我熟悉vue交给了我一个将element 表单封装成组件的练手任务.由于开发过程中遇到的表 ...
- 学习使用Guava Cache
官方文档:https://github.com/google/guava/wiki/CachesExplained 目录 一.guava cache介绍 二.快速入门 2.1.引入依赖 2.2.第一个 ...
- Error : Failed to get convolution algorithm. This is probably because cuDNN failed to initialize
记录一下: 报错:# Error : Failed to get convolution algorithm. This is probably because cuDNN failed to ini ...
- 使用VMware12在CentOS7上部署docker实例
今天下午算是自己搞了一下午才搞出来,对于认为linux是自己死穴的我,现在能搞出来,心里滋味不是一丢丢,哈哈~~~ 算了,废话不多说,直接上图!步骤如下: 1.在安装好VMware12并安装好了cen ...
- Cinemachine简介
先贴一下官方的Cinemachine文档Cinemachine Documentation 简介 使用 我们第一次使用Cinemachine时大概是这样一个流程: 在需要被控制的Camera上 ...
- new Date在IOS下面的兼容问题
此问题坑爹啊,着实坑爹,要不是本宝宝鬼机灵再次进行了测试,不然测试都测不出来的问题,问题源头,有两个时间: let start = "2018-08-08 00:00:00" ; ...