python+opencv+dlib瘦脸效果
对实现人脸瘦脸简单功能的一个记录,大概流程如下:
1.使用dlib检测出人脸关键点
2.使用Interactive Image Warping 局部平移算法实现瘦脸
参考:https://blog.csdn.net/grafx/article/details/70232797?locationNum=11&fps=1
#!/usr/bin/env python3
# -*- coding: utf-8 -*- import dlib
import cv2
import numpy as np
import math
predictor_path='data/shape_predictor_68_face_landmarks.dat' #使用dlib自带的frontal_face_detector作为我们的特征提取器
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor(predictor_path) def landmark_dec_dlib_fun(img_src):
img_gray = cv2.cvtColor(img_src,cv2.COLOR_BGR2GRAY) land_marks = [] rects = detector(img_gray,0) for i in range(len(rects)):
land_marks_node = np.matrix([[p.x,p.y] for p in predictor(img_gray,rects[i]).parts()])
# for idx,point in enumerate(land_marks_node):
# # 68点坐标
# pos = (point[0,0],point[0,1])
# print(idx,pos)
# # 利用cv2.circle给每个特征点画一个圈,共68个
# cv2.circle(img_src, pos, 5, color=(0, 255, 0))
# # 利用cv2.putText输出1-68
# font = cv2.FONT_HERSHEY_SIMPLEX
# cv2.putText(img_src, str(idx + 1), pos, font, 0.8, (0, 0, 255), 1, cv2.LINE_AA)
land_marks.append(land_marks_node) return land_marks '''
方法: Interactive Image Warping 局部平移算法
''' def localTranslationWarp(srcImg,startX,startY,endX,endY,radius): ddradius = float(radius * radius)
copyImg = np.zeros(srcImg.shape, np.uint8)
copyImg = srcImg.copy() # 计算公式中的|m-c|^2
ddmc = (endX - startX) * (endX - startX) + (endY - startY) * (endY - startY)
H, W, C = srcImg.shape
for i in range(W):
for j in range(H):
#计算该点是否在形变圆的范围之内
#优化,第一步,直接判断是会在(startX,startY)的矩阵框中
if math.fabs(i-startX)>radius and math.fabs(j-startY)>radius:
continue distance = ( i - startX ) * ( i - startX) + ( j - startY ) * ( j - startY ) if(distance < ddradius):
#计算出(i,j)坐标的原坐标
#计算公式中右边平方号里的部分
ratio=( ddradius-distance ) / ( ddradius - distance + ddmc)
ratio = ratio * ratio #映射原位置
UX = i - ratio * ( endX - startX )
UY = j - ratio * ( endY - startY ) #根据双线性插值法得到UX,UY的值
value = BilinearInsert(srcImg,UX,UY)
#改变当前 i ,j的值
copyImg[j,i] =value return copyImg #双线性插值法
def BilinearInsert(src,ux,uy):
w,h,c = src.shape
if c == 3:
x1=int(ux)
x2=x1+1
y1=int(uy)
y2=y1+1 part1=src[y1,x1].astype(np.float)*(float(x2)-ux)*(float(y2)-uy)
part2=src[y1,x2].astype(np.float)*(ux-float(x1))*(float(y2)-uy)
part3=src[y2,x1].astype(np.float) * (float(x2) - ux)*(uy-float(y1))
part4 = src[y2,x2].astype(np.float) * (ux-float(x1)) * (uy - float(y1)) insertValue=part1+part2+part3+part4 return insertValue.astype(np.int8) def face_thin_auto(src): landmarks = landmark_dec_dlib_fun(src) #如果未检测到人脸关键点,就不进行瘦脸
if len(landmarks) == 0:
return for landmarks_node in landmarks:
left_landmark= landmarks_node[3]
left_landmark_down=landmarks_node[5] right_landmark = landmarks_node[13]
right_landmark_down = landmarks_node[15] endPt = landmarks_node[30] #计算第4个点到第6个点的距离作为瘦脸距离
r_left=math.sqrt((left_landmark[0,0]-left_landmark_down[0,0])*(left_landmark[0,0]-left_landmark_down[0,0])+
(left_landmark[0,1] - left_landmark_down[0,1]) * (left_landmark[0,1] - left_landmark_down[0, 1])) # 计算第14个点到第16个点的距离作为瘦脸距离
r_right=math.sqrt((right_landmark[0,0]-right_landmark_down[0,0])*(right_landmark[0,0]-right_landmark_down[0,0])+
(right_landmark[0,1] -right_landmark_down[0,1]) * (right_landmark[0,1] -right_landmark_down[0, 1])) #瘦左边脸
thin_image = localTranslationWarp(src,left_landmark[0,0],left_landmark[0,1],endPt[0,0],endPt[0,1],r_left)
#瘦右边脸
thin_image = localTranslationWarp(thin_image, right_landmark[0,0], right_landmark[0,1], endPt[0,0],endPt[0,1], r_right) #显示
cv2.imshow('thin',thin_image)
cv2.imwrite('thin.jpg',thin_image) def main():
src = cv2.imread('img/test6.jpg')
cv2.imshow('src', src)
face_thin_auto(src)
cv2.waitKey(0) if __name__ == '__main__':
main()
原文:https://blog.csdn.net/u011941438/article/details/82416470
python+opencv+dlib瘦脸效果的更多相关文章
- Python+OpenCV图像处理(一)——读取显示一张图片
先在此处先声明,后面学习python+opencv图像处理时均参考这位博主的博文https://blog.csdn.net/u011321546/article/category/7495016/2? ...
- 基于深度学习的人脸识别系统(Caffe+OpenCV+Dlib)【三】VGG网络进行特征提取
前言 基于深度学习的人脸识别系统,一共用到了5个开源库:OpenCV(计算机视觉库).Caffe(深度学习库).Dlib(机器学习库).libfacedetection(人脸检测库).cudnn(gp ...
- 基于深度学习的人脸识别系统系列(Caffe+OpenCV+Dlib)——【四】使用CUBLAS加速计算人脸向量的余弦距离
前言 基于深度学习的人脸识别系统,一共用到了5个开源库:OpenCV(计算机视觉库).Caffe(深度学习库).Dlib(机器学习库).libfacedetection(人脸检测库).cudnn(gp ...
- linux/ubuntu下最简单好用的python opencv安装教程 ( 解决 imshow, SIFT, SURF, CSRT使用问题)
希望这篇文章能彻底帮你解决python opencv安装和使用中的常见问题. 懒人请直奔这一节, 一条命令安装 opencv 使用python-opencv常用的问题 在linux中使用python版 ...
- python opencv识别蓝牌车牌号 之 取出车牌号 (1/3)
概述 车牌识别是计算机视频图像识别技术在车辆牌照识别中的一种应用,通常来讲如果结合opencv进行车牌识别主要分为四个大步骤,分别为: 图像采集 车牌定位 分割车牌字符 字符识别 当然,如果结合了机器 ...
- Python+opencv打开修图的正确方式get
先逼逼两句: 图像是 Web 应用中除文字外最普遍的媒体格式. 流行的 Web 静态图片有 JPEG.PNG.ICO.BMP 等.动态图片主要是 GIF 格式.为了节省图片传输流量,大型互联网公司还会 ...
- 搭建基于python +opencv+Beautifulsoup+Neurolab机器学习平台
搭建基于python +opencv+Beautifulsoup+Neurolab机器学习平台 By 子敬叔叔 最近在学习麦好的<机器学习实践指南案例应用解析第二版>,在安装学习环境的时候 ...
- .NET + OpenCV & Python + OpenCV 配置
最近需要做一个图像识别的GUI应用,权衡了Opencv+ 1)QT,2)Python GUI,3).NET后选择了.NET... 本文给出C#+Opencv和Python+Opencv的相应参考,节省 ...
- RPi 2B python opencv camera demo example
/************************************************************************************** * RPi 2B pyt ...
随机推荐
- Python学习笔记之基础篇(五)字典
#数据类型划分:可变数据类型 不可变数据类型 #不可变数据类型 : 元组 bool int str --> 可哈希 #可变数据类型 list ,dict set --->不可哈希 ''' ...
- 题解 nflsoj553 【六校联合训练 省选 #10】飞
题目链接 我们称"简要题意"给出的三个要求分别为"条件1","条件2","条件3". 条件3长得比较丑,考虑转化一下.把 ...
- 一个Java的小问题
老师今天在讨论群里抛出了一个问题,让大家尝试思考一下他所给的一段代码输出是什么. 其代码如下: class T { void foo() { this.bar(); } void bar() { Sy ...
- 【Python数组及其基础操作】【numpy ndarray】
一.创建数组 在python中创建数组最简单的办法就是使用array函数.它接受一切序列型的对象,然后产生一个含有传入数据的numpy数组.其中,嵌套序列(比如由一组等长列表组成的列表)会被转换为一个 ...
- centos6忘记root密码
Centos6 1.在开机时不要自动进入系统,按任意键进入GRUB引导菜单 2.按E键进入编辑模式 3.选中kernel选项继续按E键 4.在结尾处添加single关键字后按ENTER保存退出 5.之 ...
- SpringBoot 入门demo
创建SpringBoot项目方式一 (1)新建maven项目,不使用骨架. 使用maven管理依赖就行了,不必使用骨架(模板). (2)在pom.xml中添加 <!--springboot核心. ...
- 关于dotnet跨平台 微信公众号
dotNET跨平台 <dotNET跨平台>是国内首个以.NET程序员.技术文化.新闻为主题的公众号,拥有超过6万读者.在这里你可以谈微软.NET,Mono的跨平台开发技术,也可以谈谈其他的 ...
- GSON使用笔记(3) -- 如何反序列化出List
GSON使用笔记(3) -- 如何反序列化出List 时间 2014-06-26 17:57:06 CSDN博客原文 http://blog.csdn.net/zxhoo/article/deta ...
- jdk环境
安装方式一 jdk环境 干净的环境 将tar包解压到 /usr/local下 版本为jdk-8u211-linux-x64.tar.gz 路径为/usr/local/jdk1.8.0_211 /u ...
- HiBench成长笔记——(8) 分析源码workload_functions.sh
workload_functions.sh 是测试程序的入口,粘连了监控程序 monitor.py 和 主运行程序: #!/bin/bash # Licensed to the Apache Soft ...