题意:输入两个非负整数a、b和正整数n(0<=a,b<264,1<=n<=1000),你的任务是计算f(ab)除以n的余数,f(0) = 0, f(1) = 1,且对于所有非负整数i,f(i + 2) = f(i + 1) + f(i)。

分析:

1、对于某个n取余的斐波那契序列总是有周期的,求出每个取值的n下的斐波那契序列和周期。

2、ab对T[n]取余,即可确定对n取余的斐波那契序列中f(ab)的位置。

#pragma comment(linker, "/STACK:102400000, 102400000")
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<cmath>
#include<iostream>
#include<sstream>
#include<iterator>
#include<algorithm>
#include<string>
#include<vector>
#include<set>
#include<map>
#include<stack>
#include<deque>
#include<queue>
#include<list>
#define Min(a, b) ((a < b) ? a : b)
#define Max(a, b) ((a < b) ? b : a)
const double eps = 1e-8;
inline int dcmp(double a, double b) {
if(fabs(a - b) < eps) return 0;
return a < b ? -1 : 1;
}
typedef long long LL;
typedef unsigned long long ULL;
const int INT_INF = 0x3f3f3f3f;
const int INT_M_INF = 0x7f7f7f7f;
const LL LL_INF = 0x3f3f3f3f3f3f3f3f;
const LL LL_M_INF = 0x7f7f7f7f7f7f7f7f;
const int dr[] = {0, 0, -1, 1, -1, -1, 1, 1};
const int dc[] = {-1, 1, 0, 0, -1, 1, -1, 1};
const int MOD = 1e9 + 7;
const double pi = acos(-1.0);
const int MAXN = 1000 + 10;
const int MAXT = 10000 + 10;
using namespace std;
vector<int> v[MAXN];
int T[MAXN];//周期
void init(){
for(int i = 2; i <= 1000; ++i){
v[i].push_back(0);
v[i].push_back(1);
for(int j = 2; ; ++j){
v[i].push_back((v[i][j - 1] + v[i][j - 2]) % i);
if(v[i][j] == 1 && v[i][j - 1] == 0){
T[i] = j - 1;
break;
}
}
}
}
ULL Q_POW(ULL a, ULL b, int n){
ULL ans = 1ULL;
ULL tmp = a;
while(b){
if(b & 1){
ans = (ans * tmp) % n;
}
tmp = (tmp * tmp) % n;
b >>= 1;
}
return ans;
}
int main(){
int N;
scanf("%d", &N);
init();
while(N--){
ULL a, b, n;
scanf("%llu%llu%llu", &a, &b, &n);
if(a == 0 || n == 1){
printf("0\n");
continue;
}
ULL ans = Q_POW(a % T[n], b, T[n]);
printf("%d\n", v[n][ans]);
}
return 0;
}

  

UVA - 11582 Colossal Fibonacci Numbers! (巨大的斐波那契数!)的更多相关文章

  1. UVA 11582 Colossal Fibonacci Numbers! 大斐波那契数

    大致题意:输入两个非负整数a,b和正整数n.计算f(a^b)%n.其中f[0]=f[1]=1, f[i+2]=f[i+1]+f[i]. 即计算大斐波那契数再取模. 一开始看到大斐波那契数,就想到了矩阵 ...

  2. UVa #11582 Colossal Fibonacci Numbers!

    巨大的斐波那契数 The i'th Fibonacci number f (i) is recursively defined in the following way: f (0) = 0 and  ...

  3. UVA 11582 Colossal Fibonacci Numbers!【数学】

    大一刚开始接触ACM就买了<算法竞赛入门经典>这本书,当时只能看懂前几章,而且题目也没做,粗鄙地以为这本书不适合自己.等到现在快大三了再回过头来看,发现刘老师还是很棒的! 扯远了... 题 ...

  4. UVA 11582 Colossal Fibonacci Numbers(数学)

    Colossal Fibonacci Numbers 想先说下最近的状态吧,已经考完试了,这个暑假也应该是最后刷题的暑假了,打完今年acm就应该会退了,但是还什么都不会呢? +_+ 所以这个暑假,一定 ...

  5. UVa 11582 Colossal Fibonacci Numbers! 紫书

    思路是按紫书上说的来. 参考了:https://blog.csdn.net/qwsin/article/details/51834161  的代码: #include <cstdio> # ...

  6. UVA 11582 Colossal Fibonacci Numbers!(循环节打表+幂取模)

    题目链接:https://cn.vjudge.net/problem/UVA-11582 /* 问题 输入a,b,n(0<a,b<2^64(a and bwill not both be ...

  7. UVa 11582 Colossal Fibonacci Numbers! 【大数幂取模】

    题目链接:Uva 11582 [vjudge] watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fil ...

  8. UVa 11582 - Colossal Fibonacci Numbers!(数论)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  9. [Swift]LeetCode509. 斐波那契数 | Fibonacci Number

    The Fibonacci numbers, commonly denoted F(n) form a sequence, called the Fibonacci sequence, such th ...

随机推荐

  1. VirtualBox安装Debian

    1.下载Debian的dvd1,按照http://www.jb51.net/os/85858.html网上教程安装Debian 1.1.我创建了20G的虚拟磁盘,分区的时候我分了3个区,2G交换空间, ...

  2. jquery使用css函数设置背景色无效解决办法

    外部的css样式为: #imageArea{ width: 200px; height: 300px; background-color: #eee !important; } 通过 以下代码来修改其 ...

  3. 083、Java数组之方法返回数组

    01.代码如下: package TIANPAN; /** * 此处为文档注释 * * @author 田攀 微信382477247 */ public class TestDemo { public ...

  4. 统计学习方法——KD树最近邻搜索

    李航老师书上的的算法说明没怎么看懂,看了网上的博客,悟出一套循环(建立好KD树以后的最近邻搜索),我想应该是这样的(例子是李航<统计学习算法>第三章56页:例3.3): 步骤 结点查询标记 ...

  5. Java中很少用的CopyOnWriteArrayList

    类注释 /** * A thread-safe variant of {@link java.util.ArrayList} in which all mutative * operations ({ ...

  6. 一 CRM 注册功能实现

    前端:登陆页面按钮跳转到注册页面 dao:  配置连接池 配置session工厂,Hibernate核心配置,映射 配置UserDao,注入session工厂 UserDao:继承HibernateD ...

  7. VUE - 引入 npm 安装的模块 以及 uuid模块的使用

    <template>   <div>       <form @submit.prevent="addTodo">         <in ...

  8. pandas包 —— drop()、sort_values()、drop_duplicates()

    一.drop() 函数 当你要删除某一行或者某一列时,用drop函数,它不改变原有的df中的数据,而是返回另一个dataframe来存放删除后的数据. 1.命令: df.drop() 删除行:df.d ...

  9. R 《回归分析与线性统计模型》page141,5.2

    rm(list = ls()) library(car) library(MASS) library(openxlsx) A = read.xlsx("data141.xlsx") ...

  10. RDD 可视化 —— RDDOperationScope.withScope

    最近在看各种博客,学习 spark 源代码. 网上对源代码的分析基本都是基于 0.7, 0.8, 1.0 的代码,而现在的发行版已经是 1.5 了.所以有些代码不大对的上.比如函数 RDD.map() ...