Football
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 3600   Accepted: 1844

Description

Consider a single-elimination football tournament involving 2n teams, denoted 1, 2, …, 2n. In each round of the tournament, all teams still in the tournament are placed in a list in order of increasing index. Then,
the first team in the list plays the second team, the third team plays the fourth team, etc. The winners of these matches advance to the next round, and the losers are eliminated. After n rounds, only one team remains undefeated; this team is declared
the winner.

Given a matrix P = [pij] such that pij is the probability that team i will beat team j in a match determine which team is most likely to win the tournament.

Input

The input test file will contain multiple test cases. Each test case will begin with a single line containing n (1 ≤ n ≤ 7). The next 2n lines each contain 2n values; here, the jth value
on the ith line represents pij. The matrix P will satisfy the constraints that pij = 1.0 − pji for all i ≠ j, and pii = 0.0 for all i.
The end-of-file is denoted by a single line containing the number −1. Note that each of the matrix entries in this problem is given as a floating-point value. To avoid precision problems, make sure that you use either the double data type instead
of float.

Output

The output file should contain a single line for each test case indicating the number of the team most likely to win. To prevent floating-point precision issues, it is guaranteed that the difference in win probability for the top two teams will be at least
0.01.

Sample Input

2
0.0 0.1 0.2 0.3
0.9 0.0 0.4 0.5
0.8 0.6 0.0 0.6
0.7 0.5 0.4 0.0
-1

Sample Output

2

Hint

In the test case above, teams 1 and 2 and teams 3 and 4 play against each other in the first round; the winners of each match then play to determine the winner of the tournament. The probability that team 2 wins the tournament in this case is:

P(2 wins)  P(2 beats 1)P(3 beats 4)P(2 beats 3) + P(2 beats 1)P(4 beats 3)P(2 beats 4)

p21p34p23 + p21p43p24

= 0.9 · 0.6 · 0.4 + 0.9 · 0.4 · 0.5 = 0.396.

The next most likely team to win is team 3, with a 0.372 probability of winning the tournament.

题意很明显,给出几支球队,给出他们相互之间胜负关系的概率,比赛机制就是两两对战淘汰,公式也在Hint中给出了。

所以问题就在  第几轮对战的双方的规律。我自己找出的规律就是 从0开始标记各支战队,第m支战队第n轮会碰到的对手是 将m化为二进制,从右往左开始算 第n位会不同,第n+1位开始要相同,其余位任意的所有数。

比方说:第3轮 第15支战队会碰到的对手是什么呢?

将15变为二进制是1111。第三轮,从右至左的第三位原来是1,现在变为0。

就是10XX,所以第15支战队第三轮会碰到的对手就是1000,1001,1010,1011这四支队。

这样的话,就按照Hint中给的思路求各支战队获得冠军的概率,比较谁最大输出即可。

代码:

#include <iostream>
#include <algorithm>
#include <cmath>
using namespace std; double value[1<<9][1<<9];
double dp[10][1<<9]; int main()
{
//freopen("input.txt","r",stdin);
//freopen("out.txt","w",stdout);
int N,i,j,m;
while(cin>>N)
{
if(N == -1)
break; memset(value,0,sizeof(value));
memset(dp,0,sizeof(dp)); for(i=0;i<(1<<N);i++)
{
for(j=0;j<(1<<N);j++)
{
cin>>value[i][j];
}
} for(i=0;i<(1<<N);i++)
{
dp[0][i]=1;
} for(i=1;i<=N;i++)
{
for(j=0;j<(1<<N);j++)
{
int temp=j;
int pend= (temp>>(i-1))&1;
int temp2=(temp>>(i))<<i;
if(!pend)
{
temp2=temp2+(1<<(i-1));
} int k;
for(k=0;k<(1<<(i-1));k++)
{
if(j!=temp2)
{
dp[i][j] += dp[i-1][j]*dp[i-1][temp2]*value[j][temp2];
}
temp2++;
}
}
}
double max=0;
int max_v=-1;
for(i=0;i<(1<<N);i++)
{
if(dp[N][i]>=max)
{
max=dp[N][i];
max_v=i+1;
}
}
cout<<max_v<<endl;
}
return 0;
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

POJ 3071:Football的更多相关文章

  1. 【POJ 3071】 Football(DP)

    [POJ 3071] Football(DP) Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4350   Accepted ...

  2. 【POJ 3071】 Football

    [题目链接] http://poj.org/problem?id=3071 [算法] 概率DP f[i][j]表示第j支队伍进入第i轮的概率,转移比较显然 [代码] #include <algo ...

  3. POJ 2315:Football Game(博弈论)

    [题目链接] http://poj.org/problem?id=2315 [题目大意] 两名球员轮流从N个球中挑出不多于M个射门,每个球半径都是R,离球门S. 每次只能踢出L以内的距离.进最后一个球 ...

  4. 【POJ】【3071】Football

    概率DP kuangbin总结中的第10题 简单的画个比赛图,会发现是一颗完全二叉树,且同一层的子树之间各自独立,只有在合并得到更高一层结果时才结合. 所以我们可以按比赛轮数进行DP,f[i][j]表 ...

  5. POJ 3321:Apple Tree + HDU 3887:Counting Offspring(DFS序+树状数组)

    http://poj.org/problem?id=3321 http://acm.hdu.edu.cn/showproblem.php?pid=3887 POJ 3321: 题意:给出一棵根节点为1 ...

  6. POJ 3252:Round Numbers

    POJ 3252:Round Numbers Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 10099 Accepted: 36 ...

  7. POJ 3071 Football:概率dp

    题目链接:http://poj.org/problem?id=3071 题意: 给定n,有2^n支队伍参加足球赛. 给你所有的p[i][j],表示队伍i打败队伍j的概率. 淘汰赛制.第一轮(1,2)两 ...

  8. poj 3071 Football(概率dp)

    id=3071">http://poj.org/problem? id=3071 大致题意:有2^n个足球队分成n组打比赛.给出一个矩阵a[][],a[i][j]表示i队赢得j队的概率 ...

  9. POJ 3071 Football 【概率DP】

    Football Football Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 3734   Accepted: 1908 ...

随机推荐

  1. Linux centosVMware yum更换国内仓库源、yum下载rpm包、源码包安装

    一.yum更换国内仓库源 cd /etc/yum.repos.d/ rm -f dvd.repo wget http://mirrors.163.com/.help/CentOS7-Base-163. ...

  2. 转:Nginx 性能优化有这篇就够了!

    目录: https://mp.weixin.qq.com/s/YoZDzY4Tmj8HpQkSgnZLvA 1.Nginx运行工作进程数量 Nginx运行工作进程个数一般设置CPU的核心或者核心数x2 ...

  3. hibernate中简单的增删改查

    项目的整体结构如下 1.配置文件 hibernate.cfg.xml <!DOCTYPE hibernate-configuration PUBLIC "-//Hibernate/Hi ...

  4. Link Analysis_1_Basic Elements

    1. Edge Attributes 1.1 Methods of category 1.1.1 Basic three categories in terms of number of layers ...

  5. 学习进度-10 python爬虫

    学习爬虫的第一个案例是小说爬虫. 小说爬虫首先是解析小说页面源代码,在页面源代码中可以看到小说每章节的内容链接 爬虫的代码: import requests import re url = 'http ...

  6. ROS常用库(三)API学习之常用common_msgs(上)

    一.概述 common_msgs包含其他ROS软件包广泛使用的消息.这些消息包括动作消息(actionlib_msgs),诊断消息(diagnostic_msgs),几何图元(geometry_msg ...

  7. PHP代码审计之入门实战

    系统介绍 CMS名称:新秀企业网站系统PHP版 官网:www.sinsiu.com 版本:这里国光用的1.0 正式版 (官网最新的版本有毒,网站安装的时候居然默认使用远程数据库???迷之操作 那站长的 ...

  8. 015.CI4框架CodeIgniter数据库操作之:Query带参数查询数

    01.我们在Models中写数据库的操作.具体的查询代码如下: <?php namespace App\Models\System; use CodeIgniter\Model; class U ...

  9. 使用 HTML5 视频事件

    转自:http://msdn.microsoft.com/zh-cn/library/hh924822(v=vs.85).aspx 为什么要使用事件? HTML5 视频对象提供了很多事件,这些事件可以 ...

  10. spring boot引入外部jar包

    两种方法: 一:使用project-properties-java build path-Libraries 此方法的问题时不能使用mav打包. 二:写到POM里 首先在新建libs文件夹(根目录或者 ...