从linux源码看socket(tcp)的timeout

前言

网络编程中超时时间是一个重要但又容易被忽略的问题,对其的设置需要仔细斟酌。在经历了数次物理机宕机之后,笔者详细的考察了在网络编程(tcp)中的各种超时设置,于是就有了本篇博文。本文大部分讨论的是socket设置为block的情况,即setNonblock(false),仅在最后提及了nonblock socket(本文基于linux 2.6.32-431内核)。

connectTimeout

在讨论connectTimeout之前,让我们先看下java和C语言对于socket connect调用的函数签名:

java:
// 函数调用中携带有超时时间
public void connect(SocketAddress endpoint, int timeout) ;
C语言:
// 函数调用中并不携带超时时间
int connect(int sockfd, const struct sockaddr * sockaddr, socklen_t socklent)

操作系统提供的connect系统调用并没有提供timeout的参数设置而java却有,我们先考察一下原生系统调用的超时策略。

connect系统调用

我们观察一下此系统调用的kernel源码,调用栈如下所示:

connect[用户态]
|->SYSCALL_DEFINE3(connect)[内核态]
|->sock->ops->connect

由于我们考察的是tcp的connect,其socket的内部结构如下图所示:



最终调用的是tcp_connect,代码如下所示:

int tcp_connect(struct sock *sk) {
......
// 发送SYN
err = tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
...
/* Timer for repeating the SYN until an answer. */
// 由于是刚建立连接,所以其rto是TCP_TIMEOUT_INIT
inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
return 0;
}

又上面代码可知,在tcp_connect设置了重传定时器之后return回了tcp_v4_connect再return到inet_stream_connect。我们继续考察:

int inet_stream_connect(struct socket *sock, struct sockaddr *uaddr,
int addr_len, int flags)
{
......
// tcp_v4_connect=>tcp_connect
err = sk->sk_prot->connect(sk, uaddr, addr_len);
// 这边用的是sk->sk_sndtimeo
timeo = sock_sndtimeo(sk, flags & O_NONBLOCK);
......
inet_wait_for_connect(sk, timeo));
......
out:
release_sock(sk);
return err; sock_error:
err = sock_error(sk) ? : -ECONNABORTED;
sock->state = SS_UNCONNECTED;
if (sk->sk_prot->disconnect(sk, flags))
sock->state = SS_DISCONNECTING;
goto out
}

由上面代码可见,可以采用设置SO_SNDTIMEO来控制connect系统调用的超时,如下所示:

setsockopt(sockfd, SOL_SOCKET, SO_SNDTIMEO, &timeout, len);

不设置SO_SNDTIMEO

如果不设置SO_SNDTIMEO,那么会由tcp重传定时器在重传超过设置的时候后超时,如下图所示:



这个syn重传的次数由:

cat /proc/sys/net/ipv4/tcp_syn_retries 笔者机器上是5

来决定。那么我们就来看一下这个重传到底是多长时间:

tcp_connect中:
// 设置的初始超时时间为icsk_rto=TCP_TIMEOUT_INIT为1s
inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
inet_csk(sk)->icsk_rto, TCP_RTO_MAX);

其重传定时器的回掉函数为tcp_retransmit_timer:

void tcp_retransmit_timer(struct sock *sk)
{
......
// 检测是否超时
if (tcp_write_timeout(sk))
goto out;
......
// icsk_rto = icsk_rto * 2,由于syn阶段,所以isck_rto不会由于网络传输而改变
// 重传的时候会以1,2,4,8指数递增
icsk->icsk_rto = min(icsk->icsk_rto << 1, TCP_RTO_MAX);
// 重设timer
inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, icsk->icsk_rto, TCP_RTO_MAX);
out:;
}

而计算tcp_write_timeout的逻辑则是在这篇blog中已经详细描述过,

https://my.oschina.net/alchemystar/blog/1936433

只不过在connect时刻,重传的计算以TCP_TIMEOUT_INIT为单位进行计算。而ESTABLISHED(read/write)时刻,重传以TCP_RTO_MIN进行计算。那么根据这段重传逻辑,我们就可以计算出不同tcp_syn_retries最终表现的超时时间。如下图所示:



那么整理下表格,对于系统调用,connect的超时时间为:

tcp_syn_retries timeout
1 min(so_sndtimeo,3s)
2 min(so_sndtimeo,7s)
3 min(so_sndtimeo,15s)
4 min(so_sndtimeo,31s)
5 min(so_sndtimeo,63s)

上述超时时间和笔者的实测一致。

kernel代码版本细微变化

值得注意的是,linux本身官方发布的2.6.32源码对于tcp_syn_retries2的解释和RFC并不一致(至少笔者阅读的代码如此,这个细微的变化困扰了笔者好久,笔者下载了和机器对应的内核版本后才发现代码改了)。而redhat发布的2.6.32-431已经修复了这个问题(不清楚具体哪个小版本修改的),并将初始RTO设置为1s(官方2.6.32为3s)。这也是,不同内核小版本上的实验会有不同的connect timeout表现的原因(有的抓包到的重传SYN时间间隔为3,6,12......)。以下为代码对比:

========================>linux 内核版本2.6.32-431<========================
#define TCP_TIMEOUT_INIT ((unsigned)(1*HZ)) /* RFC2988bis initial RTO value */ static inline bool retransmits_timed_out(struct sock *sk,
unsigned int boundary,
unsigned int timeout,
bool syn_set)
{
......
unsigned int rto_base = syn_set ? TCP_TIMEOUT_INIT : TCP_RTO_MIN;
......
timeout = ((2 << boundary) - 1) * rto_base;
...... }
========================>linux 内核版本2.6.32.63<========================
#define TCP_TIMEOUT_INIT ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value */ static inline bool retransmits_timed_out(struct sock *sk,
unsigned int boundary
{
......
timeout = ((2 << boundary) - 1) * TCP_RTO_MIN;
......
}

另外,tcp_syn_retries重传次数可以在单个socket中通过setsockopt设置。

JAVA connect API

现在我们考察下java的connect api,其connect最终调用下面的代码:

Java_java_net_PlainSocketImpl_socketConnect(...){

    if (timeout <= 0) {
......
connect_rv = NET_Connect(fd, (struct sockaddr *)&him, len);
.....
}else{
// 如果timeout > 0 ,则设置为nonblock模式
SET_NONBLOCKING(fd);
/* no need to use NET_Connect as non-blocking */
connect_rv = connect(fd, (struct sockaddr *)&him, len);
/*
* 这边用系统调用select来模拟阻塞调用超时
*/
while (1) {
......
struct timeval t;
t.tv_sec = timeout / 1000;
t.tv_usec = (timeout % 1000) * 1000;
connect_rv = NET_Select(fd+1, 0, &wr, &ex, &t);
......
}
......
// 重新设置为阻塞模式
SET_BLOCKING(fd);
......
}
}

其和connect系统调用的不同点是,在timeout为0的时候,走默认的系统调用不设置超时时间的逻辑。在timeout>0时,将socket设置为非阻塞,然后用select系统调用去模拟超时,而没有走linux本身的超时逻辑,如下图所示:



由于没有java并没有设置so_sndtimeo的选项,所以在timeout为0的时候,直接就通过重传次数来控制超时时间。而在调用connect时设置了timeout(不为0)的时候,超时时间如下表格所示:

tcp_syn_retries timeout
1 min(timeout,3s)
2 min(timeout,7s)
3 min(timeout,15s)
4 min(timeout,31s)
5 min(timeout,63s)

socketTimeout

write系统调用的超时时间

socket的write系统调用最后调用的是tcp_sendmsg,源码如下所示:

int tcp_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *msg,
size_t size){
......
timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
......
while (--iovlen >= 0) {
......
// 此种情况是buffer不够了
if (copy <= 0) {
new_segment:
......
if (!sk_stream_memory_free(sk))
goto wait_for_sndbuf; skb = sk_stream_alloc_skb(sk, select_size(sk),sk->sk_allocation);
if (!skb)
goto wait_for_memory;
}
......
}
......
// 这边等待write buffer有空间
wait_for_sndbuf:
set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
wait_for_memory:
if (copied)
tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
// 这边等待timeo长的时间
if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
goto do_error;
......
out:
// 如果拷贝了数据,则返回
if (copied)
tcp_push(sk, flags, mss_now, tp->nonagle);
TCP_CHECK_TIMER(sk);
release_sock(sk);
return copied;
out_err:
// error的处理
err = sk_stream_error(sk, flags, err);
TCP_CHECK_TIMER(sk);
release_sock(sk);
return err;
}

从上面的内核代码看出,如果socket的write buffer依旧有空间的时候,会立马返回,并不会有timeout。但是write buffer不够的时候,会等待SO_SNDTIMEO的时间(nonblock时候为0)。但是如果SO_SNDTIMEO没有设置的时候,默认初始化为MAX_SCHEDULE_TIMEOUT,可以认为其超时时间为无限。那么其超时时间会有另一个条件来决定,我们看下sk_stream_wait_memory的源码:

int sk_stream_wait_memory(struct sock *sk, long *timeo_p){
// 等待socket shutdown或者socket出现err
sk_wait_event(sk, &current_timeo, sk->sk_err ||
(sk->sk_shutdown & SEND_SHUTDOWN) ||
(sk_stream_memory_free(sk) &&
!vm_wait));
}

在write等待的时候,如果出现socket被shutdown或者socket出现错误的时候,则会跳出wait进而返回错误。在不考虑对端shutdown的情况下,出现sk_err的时间其实就是其write的timeout时间,那么我们看下什么时候出现sk->sk_err。

SO_SNDTIMEO不设置,write buffer满之后ack一直不返回的情况(例如,物理机宕机)

物理机宕机后,tcp发送msg的时候,ack不会返回,则会在重传定时器tcp_retransmit_timer到期后timeout,其重传到期时间通过tcp_retries2以及TCP_RTO_MIN计算出来。其源码可见笔者的blog:

https://my.oschina.net/alchemystar/blog/1936433

tcp_retries2的设置位置为:

cat /proc/sys/net/ipv4/tcp_retries2 笔者机器上是5,默认是15

SO_SNDTIMEO不设置,write buffer满之后对端不消费,导致buffer一直满的情况

和上面ack超时有些许不一样的是,一个逻辑是用TCP_RTO_MIN通过tcp_retries2计算出来的时间。另一个是真的通过重传超过tcp_retries2次数来time_out,两者的区别和rto的动态计算有关。但是可以大致认为是一致的。

上述逻辑如下图所示:

write_timeout表格

tcp_retries2 buffer未满 buffer满
5 立即返回 min(SO_SNDTIMEO,(25.6s-51.2s)根据动态rto定
15 立即返回 min(SO_SNDTIMEO,(924.6s-1044.6s)根据动态rto定

java的SocketOutputStream的sockWrite0超时时间

java的sockWrite0没有设置超时时间的地方,同时也没有设置过SO_SNDTIMEOUT,其直接调用了系统调用,所以其超时时间和write系统调用保持一致。

readTimeout

ReadTimeout可能是最容易导致问题的地方。我们先看下系统调用的源码:

read系统调用

socket的read系统调用最终调用的是tcp_recvmsg, 其源码如下:

int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
size_t len, int nonblock, int flags, int *addr_len)
{
......
// 这边timeo=SO_RCVTIMEO
timeo = sock_rcvtimeo(sk, nonblock);
......
do{
......
// 下面这一堆判断表明,如果出现错误,或者已经被CLOSE/SHUTDOWN则跳出循环
if(copied) {
if (sk->sk_err ||
sk->sk_state == TCP_CLOSE ||
(sk->sk_shutdown & RCV_SHUTDOWN) ||
!timeo ||
signal_pending(current))
break;
} else {
if (sock_flag(sk, SOCK_DONE))
break; if (sk->sk_err) {
copied = sock_error(sk);
break;
}
// 如果socket shudown跳出
if (sk->sk_shutdown & RCV_SHUTDOWN)
break;
// 如果socket close跳出
if (sk->sk_state == TCP_CLOSE) {
if (!sock_flag(sk, SOCK_DONE)) {
/* This occurs when user tries to read
* from never connected socket.
*/
copied = -ENOTCONN;
break;
}
break;
}
.......
}
....... if (copied >= target) {
/* Do not sleep, just process backlog. */
release_sock(sk);
lock_sock(sk);
} else /* 如果没有读到target自己数(和水位有关,可以暂认为是1),则等待SO_RCVTIMEO的时间 */
sk_wait_data(sk, &timeo);
} while (len > 0);
......
}

上面的逻辑如下图所示:



重传以及探测定时器timeout事件的触发时机如下图所示:



如果内核层面ack正常返回而且对端窗口不为0,仅仅应用层不返回任何数据,那么就会无限等待,直到对端有数据或者socket close/shutdown为止,如下图所示:



很多应用就是基于这个无限超时来设计的,例如activemq的消费者逻辑。

java的SocketInputStream的sockRead0超时时间

java的超时时间由SO_TIMOUT决定,而linux的socket并没有这个选项。其sockRead0和上面的java connect一样,在SO_TIMEOUT>0的时候依旧是由nonblock socket模拟,在此就不再赘述了。

ReadTimeout超时表格

C系统调用:

tcp_retries2 对端无响应 对端内核响应正常
5 min(SO_RCVTIMEO,(25.6s-51.2s)根据动态rto定 SO_RCVTIMEO==0?无限,SO_RCVTIMEO)
15 min(SO_RCVTIMEO,(924.6s-1044.6s)根据动态rto定 SO_RCVTIMEO==0?无限,SO_RCVTIMEO)

Java系统调用

tcp_retries2 对端无响应 对端内核响应正常
5 min(SO_TIMEOUT,(25.6s-51.2s)根据动态rto定 SO_TIMEOUT==0?无限,SO_RCVTIMEO
15 min(SO_TIMEOUT,(924.6s-1044.6s)根据动态rto定 SO_TIMEOUT==0?无限,SO_RCVTIMEO

对端物理机宕机之后的timeout

对端物理机宕机后还依旧有数据发送

对端物理机宕机时对端内核也gg了(不会发出任何包通知宕机),那么本端发送任何数据给对端都不会有响应。其超时时间就由上面讨论的

min(设置的socket超时[例如SO_TIMEOUT],内核内部的定时器超时来决定)。

对端物理机宕机后没有数据发送,但在read等待

这时候如果设置了超时时间timeout,则在timeout后返回。但是,如果仅仅是在read等待,由于底层没有数据交互,那么其无法知道对端是否宕机,所以会一直等待。但是,内核会在一个socket两个小时都没有数据交互情况下(可设置)启动keepalive定时器来探测对端的socket。如下图所示:



大概是2小时11分钟之后会超时返回。keepalive的设置由内核参数指定:

cat /proc/sys/net/ipv4/tcp_keepalive_time 7200 即两个小时后开始探测
cat /proc/sys/net/ipv4/tcp_keepalive_intvl 75 即每次探测间隔为75s
cat /proc/sys/net/ipv4/tcp_keepalve_probes 9 即一共探测9次

可以在setsockops中对单独的socket指定是否启用keepalive定时器(java也可以)。

对端物理机宕机后没有数据发送,也没有read等待

和上面同理,也是在keepalive定时器超时之后,将连接close。所以我们可以看到一个不活跃的socket在对端物理机突然宕机之后,依旧是ESTABLISHED状态,过很长一段时间之后才会关闭。

进程宕后的超时

如果仅仅是对端进程宕机的话(进程所在内核会close其所拥有的所有socket),由于fin包的发送,本端内核可以立刻知道当前socket的状态。如果socket是阻塞的,那么将会在当前或者下一次write/read系统调用的时候返回给应用层相应的错误。如果是nonblock,那么会在select/epoll中触发出对应的事件通知应用层去处理。

如果fin包没发送到对端,那么在下一次write/read的时候内核会发送reset包作为回应。

nonblock

设置为nonblock=true后,由于read/write都是立刻返回,且通过select/epoll等处理重传超时/probe超时/keep alive超时/socket close等事件,所以根据应用层代码决定其超时特性。定时器超时事件发生的时间如上面几小节所述,和是否nonblock无关。nonblock的编程模式可以让应用层对这些事件做出响应。

总结

网络编程中超时时间是个重要但又容易被忽略的问题,这个问题只有在遇到物理机宕机等平时遇不到的现象时候才会凸显。笔者在经历数次物理机宕机之后才好好的研究了一番,希望本篇文章可以对读者在以后遇到类似超时问题时有所帮助。

公众号

关注笔者公众号,获取更多干货文章:

从linux源码看socket(tcp)的timeout的更多相关文章

  1. 从Linux源码看Socket(TCP)Client端的Connect

    从Linux源码看Socket(TCP)Client端的Connect 前言 笔者一直觉得如果能知道从应用到框架再到操作系统的每一处代码,是一件Exciting的事情. 今天笔者就来从Linux源码的 ...

  2. 从Linux源码看Socket(TCP)的bind

    从Linux源码看Socket(TCP)的bind 前言 笔者一直觉得如果能知道从应用到框架再到操作系统的每一处代码,是一件Exciting的事情. 今天笔者就来从Linux源码的角度看下Server ...

  3. 从Linux源码看Socket(TCP)的listen及连接队列

    从Linux源码看Socket(TCP)的listen及连接队列 前言 笔者一直觉得如果能知道从应用到框架再到操作系统的每一处代码,是一件Exciting的事情. 今天笔者就来从Linux源码的角度看 ...

  4. 从Linux源码看Socket(TCP)的accept

    从Linux源码看Socket(TCP)的accept 前言 笔者一直觉得如果能知道从应用到框架再到操作系统的每一处代码,是一件Exciting的事情. 今天笔者就从Linux源码的角度看下Serve ...

  5. 从linux源码看socket的阻塞和非阻塞

    从linux源码看socket的阻塞和非阻塞 笔者一直觉得如果能知道从应用到框架再到操作系统的每一处代码,是一件Exciting的事情. 大部分高性能网络框架采用的是非阻塞模式.笔者这次就从linux ...

  6. 从linux源码看epoll

    从linux源码看epoll 前言 在linux的高性能网络编程中,绕不开的就是epoll.和select.poll等系统调用相比,epoll在需要监视大量文件描述符并且其中只有少数活跃的时候,表现出 ...

  7. 从Linux源码看TIME_WAIT状态的持续时间

    从Linux源码看TIME_WAIT状态的持续时间 前言 笔者一直以为在Linux下TIME_WAIT状态的Socket持续状态是60s左右.线上实际却存在TIME_WAIT超过100s的Socket ...

  8. mysql-5.5 for linux源码安装

    mysql-5.5 for linux源码安装 1.使用Yum安装依赖软件包 # yum install -y gcc gcc-c++ gcc-g77 autoconf automake bison  ...

  9. 如何从Linux源码获知版本信息

    /*************************************************************************** * 如何从Linux源码获知版本信息 * 声明 ...

随机推荐

  1. PAT-1132 Cut Integer (整数分割)

    Cutting an integer means to cut a K digits long integer Z into two integers of (K/2) digits long int ...

  2. D. Almost Acyclic Graph 判断减一条边能不能得到DAG

    D. Almost Acyclic Graph time limit per test 1 second memory limit per test 256 megabytes input stand ...

  3. 哈理工新生赛 马拉车+贪心 最大密度子图 AC自动机+DP

    J.Symmys Time Limit: 1000 MS Memory Limit: 262144 K Total Submit: 50 (13 users) Total Accepted: 2 (2 ...

  4. Java的每个Thread都希望拥有自己的名称

    一. 介绍 平时工作中可能会碰到排查多线程的bug,而在排查的时候,如果线程(单个线程或者是线程池的线程)没有一个比较明确的名称,那么在排查的时候就比较头疼,因为排查问题首先需要找出“问题线程”,如果 ...

  5. sqoop-介绍及安装

    1.sqoop概述 sqoop是Apache旗下一款hadoop和关系数据库服务器之间传送数据的工具: 核心的功能: 导入,迁入(从关系型数据库-->hdfs hive hbase) 导出,迁出 ...

  6. PHP SQL预处理

    php预处理查询 $query='insert into p1(info) values(?)'; $query2='select info from p1 where id=?'; $country ...

  7. Django + Celery 实现动态配置定时任务

    哈喽,今天给大家分享一篇Django+Celery实现动态配置定时任务,因为最近也是无意间看到一位大佬关于这块的文章,然后自己觉得不错,也想学习写一下,然后最终实现功能是在前端页面统一管理计划任务,大 ...

  8. [UWP]使用离散式关键帧播放动画

    这篇文章介绍离散式关键帧,并使用它做些有趣的动画. 1. 什么是离散式关键帧 以DoubleAnimationUsingKeyFrames为例,它支持四种Double的关键帧,其中EasingDoub ...

  9. Docker安装常见的应用与将本地镜像推送到阿里云

    一.Docker安装常用的应用 1,docker安装mysql #拉取镜像mysql5.7 docker pull mysql:5.7 #启动容器(绑定对应的配置文件和日志,默认密码为123456) ...

  10. 14.Java连接Redis_Jedis_主从模式

    redis的主从模式之前提到过,这里我们使用redis来实现主从模式. 首先在VMware虚拟机中的Linux中打开两个终端,一个是用户jack,一个是newuser: 然后我们jack作为主机,re ...