一、概念

Word2vec是一个Estimator,它采用一系列代表文档的词语来训练word2vecmodel。该模型将每个词语映射到一个固定大小的向量。word2vecmodel使用文档中每个词语的平均数来将文档转换为向量,然后这个向量可以作为预测的特征,来计算文档相似度计算等等。

二、代码实现

2.1、引包,获取spark

首先,我们引入相关包:

import java.util.Arrays;
import java.util.List;
import org.apache.spark.ml.feature.Word2Vec;
import org.apache.spark.ml.feature.Word2VecModel;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.SparkSession;
import org.apache.spark.sql.types.ArrayType;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.Metadata;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;块

然后是获取spark

SparkSession spark =  SparkSession.builder().appName("Word2VecTest").master("local").getOrCreate();
2.2、构建测试数据

接着呢来构建一个DataFrame,往DateFrame里加一些测试的文档信息

List<Row> rawData =  Arrays.asList(RowFactory.create(Arrays.asList("Hi I heard about Spark".split(","))),
RowFactory.create(Arrays.asList("I wish Java could use case classes".split(","))),
RowFactory.create(Arrays.asList("Logistic regression models are neat".split(","))));
StructType schema = new StructType(new StructField[] {
new StructField("text",new ArrayType(DataTypes.StringType,false),false,Metadata.empty())
}); Dataset<Row> documentDF = spark.createDataFrame(rawData,schema);
documentDF.show(false);

我们来查看一下控制台的输出结果:

+-------------------------------------+
|text |
+-------------------------------------+
|[Hi I heard about Spark] |
|[I wish Java could use case classes] |
|[Logistic regression models are neat]|
+-------------------------------------+
2.3、新建评估器,训练,转换得到向量

接下来我们新建一个Word2Vec的评估器,把单词和向量建立一个映射,设定输入为文本信息text,输出为追加列result,变量的大小为3,最小计数为0。建立完之后,用Word2Vec评估器对文档进行训练和转换,得到Dataset的数据集。

Word2Vec word2Vec = new  Word2Vec().setInputCol("text")
.setOutputCol("result")
.setVectorSize(3)
.setMinCount(0); Word2VecModel model = word2Vec.fit(documentDF);
Dataset<Row> result = model.transform(documentDF);
result.show(false);

我们看一下输出结果:

+-----------------------------------------+-------------------------------------------------------------------------------+
|text |result |
+-----------------------------------------+-------------------------------------------------------------------------------+
|[Hi I heard about Spark] |[-0.12674053013324738,0.09846510738134384,-0.10375533252954483] |
|[I wish Java could use case classes] |[-0.1633371263742447,-0.14517612755298615,0.11354436725378036] |
|[Logistic regression models are neat] |[-0.019123395904898643,-0.13107778131961823,0.14307855069637299]|
+--------------------------------------- -+-------------------------------------------------------------------------------+

我们可以看到,通过Word2VecModel将文档转换为向量,然后这个向量可以作为预测的特征,来计算文档相似度计算啦。

spark机器学习从0到1特征抽取–Word2Vec(十四)的更多相关文章

  1. spark机器学习从0到1特征提取 TF-IDF(十二)

        一.概念 “词频-逆向文件频率”(TF-IDF)是一种在文本挖掘中广泛使用的特征向量化方法,它可以体现一个文档中词语在语料库中的重要程度. 词语由t表示,文档由d表示,语料库由D表示.词频TF ...

  2. spark机器学习从0到1特征抽取–CountVectorizer(十三)

        一.概念 CountVectorizer 旨在通过计数来将一个文档转换为向量.当不存在先验字典时,Countvectorizer作为Estimator提取词汇进行训练,并生成一个CountVe ...

  3. spark机器学习从0到1聚类算法 (十)

      一.概念 1.1.定义 按照某一个特定的标准(比如距离),把一个数据集分割成不同的类或簇,使得同一个簇内的数据对象的相似性尽可能大,同时不再同一个簇内的数据对象的差异性也尽可能的大. 聚类属于典型 ...

  4. spark机器学习从0到1介绍入门之(一)

      一.什么是机器学习 机器学习(Machine Learning, ML)是一门多领域交叉学科,涉及概率论.统计学.逼近论.凸分析.算法复杂度理论等多门学科.专门研究计算机怎样模拟或实现人类的学习行 ...

  5. spark机器学习从0到1特征变换-标签和索引的转化(十六)

      一.原理 在机器学习处理过程中,为了方便相关算法的实现,经常需要把标签数据(一般是字符串)转化成整数索引,或是在计算结束后将整数索引还原为相应的标签. Spark ML 包中提供了几个相关的转换器 ...

  6. spark机器学习从0到1特征选择-卡方选择器(十五)

      一.公式 卡方检验的基本公式,也就是χ2的计算公式,即观察值和理论值之间的偏差   卡方检验公式 其中:A 为观察值,E为理论值,k为观察值的个数,最后一个式子实际上就是具体计算的方法了 n 为总 ...

  7. spark机器学习从0到1机器学习工作流 (十一)

        一.概念 一个典型的机器学习过程从数据收集开始,要经历多个步骤,才能得到需要的输出.这非常类似于流水线式工作,即通常会包含源数据ETL(抽取.转化.加载),数据预处理,指标提取,模型训练与交叉 ...

  8. spark机器学习从0到1奇异值分解-SVD (七)

      降维(Dimensionality Reduction) 是机器学习中的一种重要的特征处理手段,它可以减少计算过程中考虑到的随机变量(即特征)的个数,其被广泛应用于各种机器学习问题中,用于消除噪声 ...

  9. spark机器学习从0到1决策树(六)

      一.概念 决策树及其集合是分类和回归的机器学习任务的流行方法. 决策树被广泛使用,因为它们易于解释,处理分类特征,扩展到多类分类设置,不需要特征缩放,并且能够捕获非线性和特征交互. 诸如随机森林和 ...

随机推荐

  1. 百度paddlepaddle学习体会

    一个偶然从微信公众号中刷到了<python小白逆袭A1大神>的文章,让我不经意的邂逅了飞桨(paddlepaddle),通过加入飞桨训练营一周的学习.实践,对飞桨有了很多的了解(飞桨官网: ...

  2. 替换字符串sql

    update [表名] set 字段名 = replace(与前面一样的字段名,'原本内容','想要替换成什么') UPDATE `zjl_III_hei_zlj_20151111`.`ctrl_ne ...

  3. VC++ QT 数组的初始化

    数组有时会初始化为0. 但加了一个 QThread 的派生类对象之后,数组就不再被初始化为0了. 所以对于数组还是要手动初始化,否则可能产生无法预料的现象.

  4. GithubAction-Deploy

    GithubAction-Deploy githubhexoaction 使用 github action 自动化部署 创建GitHub repository 存放源文件 在repo设置界面里添加Se ...

  5. ubuntu 下 使用GTK+、sqlite3、c语言的学生系统

    使用GTK+2.0.sqlite3数据库.c语言 的简易的学生管理系统 实现了基本的增删查改 效果图:

  6. linux 二级目录结构

    Linux系统里面目录的顶点都是根 /etc /etc/passwd : Linux用户登陆的文件 /etc/group : 存放Linux用户组的文件 /etc/shadow :存放用户密码的文件 ...

  7. Windows10中打开git bash闪退解决方案

    重装系统后打开gitbash莫名其妙闪退... 究其原因,好像是盗版系统的null.sys文件损坏 那就在这里附上null.sys文件的下载链接: https://pan.baidu.com/s/1V ...

  8. “Too many texture interpolators would be used for ForwardBase pass”

    CGPROGRAM 下加一个 #pragma target 4.0 转载于:https://www.cnblogs.com/alps/p/7101092.html

  9. nodeJS中express框架设置全局跨域请求头

    //设置跨域请求头 router.all('*', function(req, res, next) { res.header("Access-Control-Allow-Origin&qu ...

  10. Windows 10 MSDN官方原版ISO镜像(简体中文)下载

    http://www.heu8.com/2800.html 硬件要求如下:处理器:1 GHz 或更快的处理器或 SoC RAM:1 GB(32 位)或 2 GB(64 位) 硬盘空间:16 GB(32 ...