O - Layout(差分约束 + spfa)
O - Layout(差分约束 + spfa)
Like everyone else, cows like to stand close to their friends when
queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1…N
standing along a straight line waiting for feed. The cows are standing
in the same order as they are numbered, and since they can be rather
pushy, it is possible that two or more cows can line up at exactly the
same location (that is, if we think of each cow as being located at
some coordinate on a number line, then it is possible for two or more
cows to share the same coordinate).Some cows like each other and want to be within a certain distance of
each other in line. Some really dislike each other and want to be
separated by at least a certain distance. A list of ML (1 <= ML <=
10,000) constraints describes which cows like each other and the
maximum distance by which they may be separated; a subsequent list of
MD constraints (1 <= MD <= 10,000) tells which cows dislike each other
and the minimum distance by which they must be separated.Your job is to compute, if possible, the maximum possible distance
between cow 1 and cow N that satisfies the distance constraints. Input
Line 1: Three space-separated integers: N, ML, and MD.Lines 2…ML+1: Each line contains three space-separated positive
integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at
most D (1 <= D <= 1,000,000) apart.Lines ML+2…ML+MD+1: Each line contains three space-separated positive
integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at
least D (1 <= D <= 1,000,000) apart. Output Line 1: A single integer.
If no line-up is possible, output -1. If cows 1 and N can be
arbitrarily far apart, output -2. Otherwise output the greatest
possible distance between cows 1 and N.
Sample Input
4 2 1
1 3 10
2 4 20
2 3 3
Sample Output
27
Hint Explanation of the sample:
There are 4 cows. Cows #1 and #3 must be no more than 10 units apart,
cows #2 and #4 must be no more than 20 units apart, and cows #2 and #3
dislike each other and must be no fewer than 3 units apart.The best layout, in terms of coordinates on a number line, is to put
cow #1 at 0, cow #2 at 7, cow #3 at 10, and cow #4 at 27.
思路
- 差分约束,让求最大答案,把所有给的不等式 转化为" <= " , 跑最短路径
题解(171ms)
#include<iostream>
#include<queue>
#include<cstring>
using namespace std;
#define INF 0x3f3f3f3f
const int maxn = 10005;
const int maxm = 200005;
int n,a,b;
struct Edge
{
int v,w,next;
} edge[maxm];
int head[maxn], dis[maxn];
int use[maxn];
int k = 0;
void Add(int u,int v,int w)
{
edge[++ k] = (Edge){ v, w, head[u]}; head[u] = k;
}
bool Spfa(int s, int e)
{
int cnt[maxn] = {0};
for(int i = 0; i <= n; i ++)
dis[i] = INF;
dis[s] = 0;
queue<int> q;
q.push(s);
int u,v,w;
while(! q.empty())
{
u = q.front(); q.pop();
use[u] = 0;
cnt[u] ++;
if(cnt[u] > n + 1) return false;
for(int i = head[u]; i; i = edge[i].next)
{
v = edge[i].v;
w = edge[i].w;
if(dis[v] > dis[u] + w)
{
dis[v] = dis[u] + w;
if(! use[v])
{
q.push(v);
use[v] = 1;
}
}
}
}
return true;
}
int main()
{
ios::sync_with_stdio(false); cin.tie(0);
//freopen("T.txt","r",stdin);
cin >> n >> a >> b;
int u,v,w;
for(int i = 1; i <= a; i ++)
{
cin >> u >> v >> w;
Add(u, v, w);
}
for(int i = 1; i <= b; i ++)
{
cin >> u >> v >> w;
Add(v, u,-w);
}
if(Spfa(1, n))
{
if(dis[n] == INF) cout << -2 << endl;
else cout << dis[n] << endl;
}
else
cout << -1 << endl;
return 0;
}
//分析:让求的事最大距离 -> 跑最短路
kuangbin的题解(47ms)
/*
POJ 3169 Layout
差分约束+SPFA
*/
//队列实现SPFA,需要有负环回路判断
#include<stdio.h>
#include<iostream>
#include<algorithm>
#include<string.h>
using namespace std;
const int MAXN=1010;
const int MAXE=20020;
const int INF=0x3f3f3f3f;
int head[MAXN];//每个结点的头指针
int vis[MAXN];//在队列标志
int cnt[MAXN];//每个点的入队列次数
int que[MAXN];//SPFA循环指针
int dist[MAXN];
struct Edge
{
int to;
int v;
int next;
}edge[MAXE];
int tol;
void add(int a,int b,int v)//加边
{
edge[tol].to=b;
edge[tol].v=v;
edge[tol].next=head[a];
head[a]=tol++;
}
bool SPFA(int start,int n)
{
int front=0,rear=0;
for(int v=1;v<=n;v++)//初始化
{
if(v==start)
{
que[rear++]=v;
vis[v]=true;
cnt[v]=1;
dist[v]=0;
}
else
{
vis[v]=false;
cnt[v]=0;
dist[v]=INF;
}
}
while(front!=rear)
{
int u=que[front++];
vis[u]=false;
if(front>=MAXN)front=0;
for(int i=head[u];i!=-1;i=edge[i].next)
{
int v=edge[i].to;
if(dist[v]>dist[u]+edge[i].v)
{
dist[v]=dist[u]+edge[i].v;
if(!vis[v])
{
vis[v]=true;
que[rear++]=v;
if(rear>=MAXN)rear=0;
if(++cnt[v]>n) return false;
//cnt[i]为入队列次数,用来判断是否存在负环回来
//这条好像放在这个if外面也可以??
}
}
}
}
return true;
}
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int n;
int ML,MD;
int a,b,c;
while(scanf("%d%d%d",&n,&ML,&MD)!=EOF)
{
tol=0;//加边计数,这个不要忘
memset(head,-1,sizeof(head));
while(ML--)
{
scanf("%d%d%d",&a,&b,&c);
if(a>b)swap(a,b);//注意加边顺序
add(a,b,c);
//大-小<=c ,有向边(小,大):c
}
while(MD--)
{
scanf("%d%d%d",&a,&b,&c);
if(a<b)swap(a,b);
add(a,b,-c);
//大-小>=c,小-大<=-c,有向边(大,小):-c
}
if(!SPFA(1,n)) printf("-1\n");//无解
else if(dist[n]==INF) printf("-2\n");
else printf("%d\n",dist[n]);
}
return 0;
}
O - Layout(差分约束 + spfa)的更多相关文章
- POJ-3169 Layout (差分约束+SPFA)
POJ-3169 Layout:http://poj.org/problem?id=3169 参考:https://blog.csdn.net/islittlehappy/article/detail ...
- poj Layout 差分约束+SPFA
题目链接:http://poj.org/problem?id=3169 很好的差分约束入门题目,自己刚看时学呢 代码: #include<iostream> #include<cst ...
- 【poj3169】【差分约束+spfa】
题目链接http://poj.org/problem?id=3169 题目大意: 一些牛按序号排成一条直线. 有两种要求,A和B距离不得超过X,还有一种是C和D距离不得少于Y,问可能的最大距离.如果没 ...
- POJ 3169 Layout(差分约束+链式前向星+SPFA)
描述 Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 ...
- (简单) POJ 3169 Layout,差分约束+SPFA。
Description Like everyone else, cows like to stand close to their friends when queuing for feed. FJ ...
- poj 3169 Layout(差分约束+spfa)
题目链接:http://poj.org/problem?id=3169 题意:n头牛编号为1到n,按照编号的顺序排成一列,每两头牛的之间的距离 >= 0.这些牛的距离存在着一些约束关系:1.有m ...
- poj3159 差分约束 spfa
//Accepted 2692 KB 1282 ms //差分约束 -->最短路 //TLE到死,加了输入挂,手写queue #include <cstdio> #include & ...
- 【BZOJ】2330: [SCOI2011]糖果(差分约束+spfa)
http://www.lydsy.com/JudgeOnline/problem.php?id=2330 差分约束运用了最短路中的三角形不等式,即d[v]<=d[u]+w(u, v),当然,最长 ...
- BZOJ.4500.矩阵(差分约束 SPFA判负环 / 带权并查集)
BZOJ 差分约束: 我是谁,差分约束是啥,这是哪 太真实了= = 插个广告:这里有差分约束详解. 记\(r_i\)为第\(i\)行整体加了多少的权值,\(c_i\)为第\(i\)列整体加了多少权值, ...
随机推荐
- 简单服务器端Blazor Cookie身份验证的演示
为了演示身份验证如何在服务器端 Blazor 应用程序中工作,我们将把身份验证简化为最基本的元素. 我们将简单地设置一个 cookie,然后读取应用程序中的 cookie. 应用程序身份验证 大多数商 ...
- 处理公共CDN突然失效的情况
公共CDN的使用 刚开始开发我的博客时,使用的bootcdn,发现他们被黑过,虽然想骂那些“黑客”,但是我们也没办法去防范,只能从自己的网站上入手解决. 那时我还没技术解决这个问题,网上搜过,大都只提 ...
- GCC 特性整理
1, attrib 属性 1.1 对齐指令 2,结构体名称 3,switch case 必需{} 否则会报错 a label can only be part of a statement and a ...
- Oracle 11g rac开启归档
Oracle 11g rac开启归档 查看目前归档状态 #节点1 ykws1 SQL> archive log list; Database log mode No Archive Mode A ...
- docker 学习之路 将docker容器变为镜像并上传
环境 ubunt 16.4 去hub.docker.com上注册一个账号,并在账号中注册一个公有public或者私有仓库private 步骤如下 如上图 点击该处进入创建docker库页面 除了名字之 ...
- 项目测试中发现产品bug怎么办
我所在的产品线,并非公司最大最强的产品 甚至为了推广我们这个产品,一般会拿给客户先免费试用 而在试用之前,是要经过一番通测的,测得很急,测得很快 所以产品bug非常多 那么在测试项目的时候,自然会发现 ...
- R|tableone 快速绘制文章“表一”-基线特征三线表
首发于“生信补给站” :https://mp.weixin.qq.com/s/LJfgxbTqsp8egnQxEI0nJg 生物医学或其他研究论文中的“表一”多为基线特征的描述性统计.使用R单独进行统 ...
- C++ 随机函数/伪随机函数
使用rand()函数时,每次随机数都是固定(伪随机数),在前面加上以下函数,每次生成的随机数为随机, srand((int)time(NULL)); rand();
- 从火箭发场景来学习Java多线程并发闭锁对象
从火箭发场景来学习Java多线程并发闭锁对象 倒计时器场景 在我们开发过程中,有时候会使用到倒计时计数器.最简单的是:int size = 5; 执行后,size—这种方式来实现.但是在多线程并发的情 ...
- Flask 偏函数、g对象、flask-session、数据库连接池、信号、自制命令、flask-admin
目录 一.偏函数 二.g对象 g对象和session的区别 三.flask-session 四.数据库连接池 pymsql链接数据库 数据库连接池版 utils/sql.py 五.信号 六.命令fla ...