O - Layout(差分约束 + spfa)

Like everyone else, cows like to stand close to their friends when

queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1…N

standing along a straight line waiting for feed. The cows are standing

in the same order as they are numbered, and since they can be rather

pushy, it is possible that two or more cows can line up at exactly the

same location (that is, if we think of each cow as being located at

some coordinate on a number line, then it is possible for two or more

cows to share the same coordinate).

Some cows like each other and want to be within a certain distance of

each other in line. Some really dislike each other and want to be

separated by at least a certain distance. A list of ML (1 <= ML <=

10,000) constraints describes which cows like each other and the

maximum distance by which they may be separated; a subsequent list of

MD constraints (1 <= MD <= 10,000) tells which cows dislike each other

and the minimum distance by which they must be separated.

Your job is to compute, if possible, the maximum possible distance

between cow 1 and cow N that satisfies the distance constraints. Input

Line 1: Three space-separated integers: N, ML, and MD.

Lines 2…ML+1: Each line contains three space-separated positive

integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at

most D (1 <= D <= 1,000,000) apart.

Lines ML+2…ML+MD+1: Each line contains three space-separated positive

integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at

least D (1 <= D <= 1,000,000) apart. Output Line 1: A single integer.

If no line-up is possible, output -1. If cows 1 and N can be

arbitrarily far apart, output -2. Otherwise output the greatest

possible distance between cows 1 and N.

Sample Input
4 2 1
1 3 10
2 4 20
2 3 3
Sample Output
27

Hint Explanation of the sample:

There are 4 cows. Cows #1 and #3 must be no more than 10 units apart,

cows #2 and #4 must be no more than 20 units apart, and cows #2 and #3

dislike each other and must be no fewer than 3 units apart.

The best layout, in terms of coordinates on a number line, is to put

cow #1 at 0, cow #2 at 7, cow #3 at 10, and cow #4 at 27.

思路

  • 差分约束,让求最大答案,把所有给的不等式 转化为" <= " , 跑最短路径

题解(171ms)

#include<iostream>
#include<queue>
#include<cstring>
using namespace std; #define INF 0x3f3f3f3f
const int maxn = 10005;
const int maxm = 200005;
int n,a,b;
struct Edge
{
int v,w,next;
} edge[maxm];
int head[maxn], dis[maxn];
int use[maxn];
int k = 0; void Add(int u,int v,int w)
{
edge[++ k] = (Edge){ v, w, head[u]}; head[u] = k;
} bool Spfa(int s, int e)
{
int cnt[maxn] = {0};
for(int i = 0; i <= n; i ++)
dis[i] = INF;
dis[s] = 0;
queue<int> q;
q.push(s);
int u,v,w;
while(! q.empty())
{
u = q.front(); q.pop();
use[u] = 0;
cnt[u] ++;
if(cnt[u] > n + 1) return false; for(int i = head[u]; i; i = edge[i].next)
{
v = edge[i].v;
w = edge[i].w;
if(dis[v] > dis[u] + w)
{
dis[v] = dis[u] + w;
if(! use[v])
{
q.push(v);
use[v] = 1;
}
}
}
}
return true;
} int main()
{
ios::sync_with_stdio(false); cin.tie(0);
//freopen("T.txt","r",stdin);
cin >> n >> a >> b;
int u,v,w;
for(int i = 1; i <= a; i ++)
{
cin >> u >> v >> w;
Add(u, v, w);
}
for(int i = 1; i <= b; i ++)
{
cin >> u >> v >> w;
Add(v, u,-w);
}
if(Spfa(1, n))
{
if(dis[n] == INF) cout << -2 << endl;
else cout << dis[n] << endl;
}
else
cout << -1 << endl; return 0;
}
//分析:让求的事最大距离 -> 跑最短路

kuangbin的题解(47ms)

/*
POJ 3169 Layout 差分约束+SPFA
*/
//队列实现SPFA,需要有负环回路判断
#include<stdio.h>
#include<iostream>
#include<algorithm>
#include<string.h>
using namespace std; const int MAXN=1010;
const int MAXE=20020;
const int INF=0x3f3f3f3f;
int head[MAXN];//每个结点的头指针
int vis[MAXN];//在队列标志
int cnt[MAXN];//每个点的入队列次数
int que[MAXN];//SPFA循环指针
int dist[MAXN]; struct Edge
{
int to;
int v;
int next;
}edge[MAXE];
int tol;
void add(int a,int b,int v)//加边
{
edge[tol].to=b;
edge[tol].v=v;
edge[tol].next=head[a];
head[a]=tol++;
}
bool SPFA(int start,int n)
{
int front=0,rear=0;
for(int v=1;v<=n;v++)//初始化
{
if(v==start)
{
que[rear++]=v;
vis[v]=true;
cnt[v]=1;
dist[v]=0;
}
else
{
vis[v]=false;
cnt[v]=0;
dist[v]=INF;
}
}
while(front!=rear)
{
int u=que[front++];
vis[u]=false;
if(front>=MAXN)front=0;
for(int i=head[u];i!=-1;i=edge[i].next)
{
int v=edge[i].to;
if(dist[v]>dist[u]+edge[i].v)
{
dist[v]=dist[u]+edge[i].v;
if(!vis[v])
{
vis[v]=true;
que[rear++]=v;
if(rear>=MAXN)rear=0;
if(++cnt[v]>n) return false;
//cnt[i]为入队列次数,用来判断是否存在负环回来
//这条好像放在这个if外面也可以??
}
}
}
}
return true;
}
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int n;
int ML,MD;
int a,b,c;
while(scanf("%d%d%d",&n,&ML,&MD)!=EOF)
{
tol=0;//加边计数,这个不要忘
memset(head,-1,sizeof(head));
while(ML--)
{
scanf("%d%d%d",&a,&b,&c);
if(a>b)swap(a,b);//注意加边顺序
add(a,b,c);
//大-小<=c ,有向边(小,大):c
}
while(MD--)
{
scanf("%d%d%d",&a,&b,&c);
if(a<b)swap(a,b);
add(a,b,-c);
//大-小>=c,小-大<=-c,有向边(大,小):-c
}
if(!SPFA(1,n)) printf("-1\n");//无解
else if(dist[n]==INF) printf("-2\n");
else printf("%d\n",dist[n]);
}
return 0;
}

O - Layout(差分约束 + spfa)的更多相关文章

  1. POJ-3169 Layout (差分约束+SPFA)

    POJ-3169 Layout:http://poj.org/problem?id=3169 参考:https://blog.csdn.net/islittlehappy/article/detail ...

  2. poj Layout 差分约束+SPFA

    题目链接:http://poj.org/problem?id=3169 很好的差分约束入门题目,自己刚看时学呢 代码: #include<iostream> #include<cst ...

  3. 【poj3169】【差分约束+spfa】

    题目链接http://poj.org/problem?id=3169 题目大意: 一些牛按序号排成一条直线. 有两种要求,A和B距离不得超过X,还有一种是C和D距离不得少于Y,问可能的最大距离.如果没 ...

  4. POJ 3169 Layout(差分约束+链式前向星+SPFA)

    描述 Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 ...

  5. (简单) POJ 3169 Layout,差分约束+SPFA。

    Description Like everyone else, cows like to stand close to their friends when queuing for feed. FJ ...

  6. poj 3169 Layout(差分约束+spfa)

    题目链接:http://poj.org/problem?id=3169 题意:n头牛编号为1到n,按照编号的顺序排成一列,每两头牛的之间的距离 >= 0.这些牛的距离存在着一些约束关系:1.有m ...

  7. poj3159 差分约束 spfa

    //Accepted 2692 KB 1282 ms //差分约束 -->最短路 //TLE到死,加了输入挂,手写queue #include <cstdio> #include & ...

  8. 【BZOJ】2330: [SCOI2011]糖果(差分约束+spfa)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2330 差分约束运用了最短路中的三角形不等式,即d[v]<=d[u]+w(u, v),当然,最长 ...

  9. BZOJ.4500.矩阵(差分约束 SPFA判负环 / 带权并查集)

    BZOJ 差分约束: 我是谁,差分约束是啥,这是哪 太真实了= = 插个广告:这里有差分约束详解. 记\(r_i\)为第\(i\)行整体加了多少的权值,\(c_i\)为第\(i\)列整体加了多少权值, ...

随机推荐

  1. 一起了解 .Net Foundation 项目 No.14

    .Net 基金会中包含有很多优秀的项目,今天就和笔者一起了解一下其中的一些优秀作品吧. 中文介绍 中文介绍内容翻译自英文介绍,主要采用意译.如与原文存在出入,请以原文为准. .NET Core .NE ...

  2. npm install、npm install --save与npm install --save-dev、npm install -g区别

    npm install X: 会把X包安装到node_modules目录中 不会修改package.json 之后运行npm install命令时,不会自动安装X npm install X –sav ...

  3. 前端Tips#6 - 在 async iterator 上使用 for-await-of 语法糖

    视频讲解 前往原文 前端Tips 专栏#6,点击观看 文字讲解 本期主要是讲解如何使用 for-await-of 语法糖进行异步操作迭代,让组织异步操作的代码更加简洁易读. 1.场景简述 以下代码中的 ...

  4. php -v 找不到命令

    [root@localhost htdocs]# php -v -bash: php: command not found export PATH=$PATH:/usr/local/php7/bin ...

  5. HTC推出了VIVE Comos 全新 VR(虚拟现实)系列产品

    据 The Verge 报道,近日,HTC 推出了 VIVE Comos 全新 VR(虚拟现实)系列产品.包括 Cosmos 精英套装.VIVE Cosmos XR 版.Cosmos Play 基础版 ...

  6. 11.C++ 动态内存管理

    在dll中malloc的内存, 必须要在dll中free掉,否则无法编译通过 //dll文件 #include <stdio.h> #include <iostream> #d ...

  7. 爬虫前奏——初谈Requests库

    什么是Requests Requests是用python语言基于urllib编写的,采用的是Apache2 Licensed开源协议的HTTP库如果你看过上篇文章关于urllib库的使用,你会发现,其 ...

  8. GPU Skinning不生效问题

    1)GPU Skinning不生效问题2)勾选凸包报的警告问题3)Unity 2019 图片压缩格式选择4)Android Export打包对压缩的影响5)Android内存中的Unknown部分泄漏 ...

  9. CSRF和XSS区别和预防

    名词解释 CSRF(Cross-site request forgery)跨站请求伪造 XSS (Cross-site scripting)跨站脚本攻击,这里缩写css被前端层叠样式表(Cascadi ...

  10. 告别炼丹,Google Brain提出强化学习助力Neural Architecture Search | ICLR2017

    论文为Google Brain在16年推出的使用强化学习的Neural Architecture Search方法,该方法能够针对数据集搜索构建特定的网络,但需要800卡训练一个月时间.虽然论文的思路 ...