MapReduce是一种编程模型,用于大规模数据集(大于1TB)的并行运算。概念"Map(映射)"和"Reduce(归约)"

Bit-map空间压缩和快速排序去重

1. Bit-map的基本思想
  32位机器上,对于一个整型数,比如int a=1 在内存中占32bit位,这是为了方便计算机的运算。但是对于某些应用场景而言,这属于一种巨大的浪费,因为我们可以用对应的32bit位对应存储十进制的0-31个数,而这就是Bit-map的基本思想。Bit-map算法利用这种思想处理大量数据的排序、查询以及去重。
  Bitmap在用户群做交集和并集运算的时候也有极大的便利。

2. Bit-map应用之快速排序
  假设我们要对0-7内的5个元素(4,7,2,5,3)排序(这里假设这些元素没有重复),我们就可以采用Bit-map的方法来达到排序的目的。要表示8个数,我们就只需要8个Bit(1Bytes),首先我们开辟1Byte的空间,将这些空间的所有Bit位都置为0,

  对应位设置为1:

  遍历一遍Bit区域,将该位是一的位的编号输出(2,3,4,5,7),这样就达到了排序的目的,时间复杂度O(n)。
  优点:
    运算效率高,不需要进行比较和移位;
    占用内存少,比如N=10000000;只需占用内存为N/8=1250000Byte=1.25M。
  缺点:
    所有的数据不能重复。即不可对重复的数据进行排序和查找。

3. Bit-map应用之快速去重
  2.5亿个整数中找出不重复的整数的个数,内存空间不足以容纳这2.5亿个整数。
  首先,根据“内存空间不足以容纳这2.5亿个整数”我们可以快速的联想到Bit-map。下边关键的问题就是怎么设计我们的Bit-map来表示这2.5亿个数字的状态了。其实这个问题很简单,一个数字的状态只有三种,分别为不存在,只有一个,有重复。因此,我们只需要2bits就可以对一个数字的状态进行存储了,假设我们设定一个数字不存在为00,存在一次01,存在两次及其以上为11。那我们大概需要存储空间几十兆左右。
  接下来的任务就是遍历一次这2.5亿个数字,如果对应的状态位为00,则将其变为01;如果对应的状态位为01,则将其变为11;如果为11,,对应的转态位保持不变。
  最后,我们将状态位为01的进行统计,就得到了不重复的数字个数,时间复杂度为O(n)。

4. Bit-map应用之快速查询
  同样,我们利用Bit-map也可以进行快速查询,这种情况下对于一个数字只需要一个bit位就可以了,0表示不存在,1表示存在。假设上述的题目改为,如何快速判断一个数字是够存在于上述的2.5亿个数字集合中。
  同之前一样,首先我们先对所有的数字进行一次遍历,然后将相应的转态位改为1。遍历完以后就是查询,由于我们的Bit-map采取的是连续存储(整型数组形式,一个数组元素对应32bits),我们实际上是采用了一种分桶的思想。一个数组元素可以存储32个状态位,那将待查询的数字除以32,定位到对应的数组元素(桶),然后再求余(%32),就可以定位到相应的状态位。如果为1,则代表改数字存在;否则,该数字不存在。

5. Bit-map扩展——Bloom Filter(布隆过滤器)
  当一个元素被加入集合中时,通过k各散列函数将这个元素映射成一个位数组中的k个点,并将这k个点全部置为1.
  有一定的误判率--在判断一个元素是否属于某个集合时,有可能会把不属于这个集合的元素误判为属于这个集合.因此,它不适合那些"零误判"的应用场合.在能容忍低误判的应用场景下,布隆过滤器通过极少的误判换区了存储空间的极大节省.

  Bloom Filter使用k个相互独立的哈希函数(Hash Function),它们分别将集合中的每个元素映射到{1,…,m}的范围中。对任意一个元素x,第i个哈希函数映射的位置hi(x)就会被置为1(1≤i≤k)。注:如果一个位置多次被置为1,那么只有第一次会起作用,后面几次将没有任何效果。

在判断y是否属于这个集合时,对y应用k次哈希函数,若所有hi(y)的位置都是1(1≤i≤k),就认为y是集合中的元素,否则就认为y不是集合中的元素。

6. 总结
  使用Bit-map的思想,我们可以将存储空间进行压缩,而且可以对数字进行快速排序、去重和查询的操作。Bloom Fliter是Bit-map思想的一种扩展,它可以在允许低错误率的场景下,大大地进行空间压缩,是一种拿错误率换取空间的数据结构。

7. 应用
  适用范围:可进行数据的快速查找,判重,删除,一般来说数据范围是int的10倍以下
  基本原理及要点:使用bit数组来表示某些元素是否存在,比如8位电话号码
  扩展:bloom filter可以看做是对bit-map的扩展

问题实例:
1、已知某个文件内包含一些电话号码,每个号码为8位数字,统计不同号码的个数。

8位最多99 999 999,大概需要99m个bit,大概10几M字节的内存即可。

2、在2.5亿个整数中找出不重复的整数,内存不足以容纳这2.5亿个整数。

方案1:采用2-Bitmap(每个数分配2bit,00表示不存在,01表示出现一次,10表示多次,11无意义)进行,共需内存232*2bit=1GB内存,还可以接受。然后扫描这2.5亿个整数,查看Bitmap中相对应位,如果是00变01,01变10,10保持不变。所描完事后,查看bitmap,把对应位是01的整数输出即可。

http://www.frankyang.cn/2017/08/21/da-shu-ju-chu-libitmap/

大数据处理-Bitmap的更多相关文章

  1. 大数据处理-bitmap是个神马东西

    1. Bit Map算法简介 所谓的Bit-map就是用一个bit位来标记某个元素对应的Value, 而Key即是该元素.由于采用了Bit为单位来存储数据,因此在存储空间方面,可以大大节省. 2. B ...

  2. 大数据处理-Bloom Filter

    大数据处理--Bloom Filter 布隆过滤器(Bloom Filter)是由巴顿.布隆于一九七零年提出的.它实际上是一个很长的二进制向量和一系列随机映射函数. 如果想判断一个元素是不是在一个集合 ...

  3. 翻译-In-Stream Big Data Processing 流式大数据处理

    相当长一段时间以来,大数据社区已经普遍认识到了批量数据处理的不足.很多应用都对实时查询和流式处理产生了迫切需求.最近几年,在这个理念的推动下,催生出了一系列解决方案,Twitter Storm,Yah ...

  4. [转载] 一共81个,开源大数据处理工具汇总(下),包括日志收集系统/集群管理/RPC等

    原文: http://www.36dsj.com/archives/25042 接上一部分:一共81个,开源大数据处理工具汇总(上),第二部分主要收集整理的内容主要有日志收集系统.消息系统.分布式服务 ...

  5. eMarketer:DMP帮广告主搞定大数据处理问题

    DMP(数据管理平台)帮助广告主获得可行动的洞察 在数字广告领域,大数据和数据管理平台(DPMs)仍大有可为.DMPs让广告主可以使用他们的大数据来做出更灵活更有效的营销决策. 数据管理和分析是业界挑 ...

  6. 《Spark大数据处理:技术、应用与性能优化 》

    基本信息 作者: 高彦杰 丛书名:大数据技术丛书 出版社:机械工业出版社 ISBN:9787111483861 上架时间:2014-11-5 出版日期:2014 年11月 开本:16开 页码:255 ...

  7. Spark大数据处理技术

    全球首部全面介绍Spark及Spark生态圈相关技术的技术书籍 俯览未来大局,不失精细剖析,呈现一个现代大数据框架的架构原理和实现细节 透彻讲解Spark原理和架构,以及部署模式.调度框架.存储管理及 ...

  8. hadoop大数据处理之表与表的连接

    hadoop大数据处理之表与表的连接 前言:  hadoop中表连接其实类似于我们用sqlserver对数据进行跨表查询时运用的inner join一样,两个连接的数据要有关系连接起来,中间必须有一个 ...

  9. 0基础搭建Hadoop大数据处理-初识

    在互联网的世界中数据都是以TB.PB的数量级来增加的,特别是像BAT光每天的日志文件一个盘都不够,更何况是还要基于这些数据进行分析挖掘,更甚者还要实时进行数据分析,学习,如双十一淘宝的交易量的实时展示 ...

随机推荐

  1. Android Studio 环境搭建参考,jdk10javac命令提示不是内部或外部命令

    https://blog.csdn.net/qq_33658730/article/details/78547789 win10下Android Studio和SDK下载.安装和环境变量配置 http ...

  2. Sql Server Compact 4.0数据库部署安装

    Sql Server Compact 4.0相比3.5版本增强了很多,支持Entity Framework 4.1,对于轻量级应用来讲,使用Sql Server Compact 4.0是个很好的选择, ...

  3. Manning Hadoop in Practice 翻译【6.2.2】

    不是从第一章开始. 6.2.2 Map的困境 技巧 29 鉴别map阶段的数据差异问题 数据差异是非常常见的.在map阶段,数据差异主要以少量不可以分割的大文件或者大量小文件为代表. 问题 你想要确认 ...

  4. php分享三十:php版本选择

    思考: cgi是怎么运行的?(是多线程?多进程?单线程?单进程?) fastcgi运行原理? apache运行php的原理? (是多进程还是多线程?) nginx是怎么运行php的? 什么是安全模式和 ...

  5. MySQL5.7.11免安装版的安装和配置:解决MYSQL 服务无法启动问题

    在http://dev.mysql.com/downloads/mysql 这个官网下载MySQL5.7.11 ZIP Archive版本号: watermark/2/text/aHR0cDovL2J ...

  6. JasperReport学习札记6-JRXML的标签

    原文源于:http://langhua9527.iteye.com/blog/402317 JasperReport学习笔记6-JRXML的标签1.<jasperReport>根元素包括很 ...

  7. ImageView 最大bitmap 4096

    ImageView 最大bitmap 4096,超出不显示图片

  8. C#.NET中遍历指定目录下的文件(及所有子目录及子目录里更深层目录里的文件)

    //遍历一个目录下所有的文件列表,代码实例 DirectoryInfo dir = new DirectoryInfo(folderName);var list = GetAll(dir); /// ...

  9. 菜鸟学JS(三)——自动隐藏的悬浮框

    今天写一个小实例,用js和css写一个可以自动隐藏的悬浮框.css肯定是用来控制样式的,js用来控制器显示与隐藏的.显示与隐藏通常有两种方法实现:1,用js控制其显示属性:2,用js控制其大小. 今天 ...

  10. angular学习笔记(三十)-指令(10)-require和controller

    本篇介绍指令的最后两个属性,require和controller 当一个指令需要和父元素指令进行通信的时候,它们就会用到这两个属性,什么意思还是要看栗子: html: <outer‐direct ...