POJ 3480 John(SJ定理博弈)题解
题意:n堆石头,拿走最后一块的输
思路:SJ定理:先手必胜当且仅当:(1)游戏的SG函数不为0且游戏中某个单一游戏的SG函数大于1;(2)游戏的SG函数为0且游戏中没有单一游戏的SG函数大于1。
代码:
#include<set>
#include<map>
#include<stack>
#include<cmath>
#include<queue>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
typedef long long ll;
const int maxn = + ;
const int seed = ;
const ll MOD = 1e9 + ;
const int INF = 0x3f3f3f3f;
using namespace std;
int main(){
int T, n;
scanf("%d", &T);
while(T--){
scanf("%d", &n);
int ans = , flag = , u;
while(n--){
scanf("%d", &u);
ans ^= u;
if(u > ) flag = ;
}
if(ans){
if(flag) printf("John\n");
else printf("Brother\n");
}
else{
if(flag) printf("Brother\n");
else printf("John\n");
}
}
return ;
}
POJ 3480 John(SJ定理博弈)题解的更多相关文章
- BZOJ 1022: [SHOI2008]小约翰的游戏John [SJ定理]
传送门 $anti-nim$游戏,$SJ$定理裸题 规定所有单一游戏$sg=0$结束 先手必胜: $1.\ sg \neq 0,\ 某个单一游戏sg >1$ $2.\ sg = 0,\ 没有单一 ...
- [BZOJ1022] [SHOI2008] 小约翰的游戏John (SJ定理)
Description 小约翰经常和他的哥哥玩一个非常有趣的游戏:桌子上有n堆石子,小约翰和他的哥哥轮流取石子,每个人取的时候,可以随意选择一堆石子,在这堆石子中取走任意多的石子,但不能一粒石子也不取 ...
- POJ 3480 John [博弈之Nim 与 Anti-Nim]
Nim游戏:有n堆石子,每堆个数不一,两人依次捡石子,每次只能从一堆中至少捡一个.捡走最后一个石子胜. 先手胜负:将所有堆的石子数进行异或(xor),最后值为0则先手输,否则先手胜. ======== ...
- 【HDU 3590】 PP and QQ (博弈-Anti-SG游戏,SJ定理,树上删边游戏)
PP and QQ Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total S ...
- 博弈论进阶之Anti-SG游戏与SJ定理
前言 在上一节中,我们初步了解了一下SG函数与SG定理. 今天我们来分析一下SG游戏的变式--Anti-SG游戏以及它所对应的SG定理 首先从最基本的Anti-Nim游戏开始 Anti-Nim游戏是这 ...
- SJ定理——省选前的学习2
——博弈论?上SG定理!什么?不行?那就SJ定理吧. 原来还有这么个玩意... bzoj1022. 大意是Nim取石子游戏中取到最后一个石子就算输,即无法取了就获胜(原版是无法取了就输). 我们试图套 ...
- [您有新的未分配科技点]博弈论进阶:似乎不那么恐惧了…… (SJ定理,简单的基础模型)
这次,我们来继续学习博弈论的知识.今天我们会学习更多的基础模型,以及SJ定理的应用. 首先,我们来看博弈论在DAG上的应用.首先来看一个小例子:在一个有向无环图中,有一个棋子从某一个点开始一直向它的出 ...
- bzoj 1022 SJ定理
与传统的SG游戏不同的是,完成最后一个状态的人是输的,我们把这一类问题称作Anti-SG,这类问题的解决我们需要引入一个定理—SJ定理: 对于任意一个Anti-SG游戏,如果我们规定当局面中所有的单一 ...
- SJ定理的坑点
目录 \(\bf Anti-Nim\) 定义 结论 \(\bf Anti-SG\) 定义 SJ 定理 由于出题人在膜你赛出了假题,于是就发现了这个坑点-- 反正这个出题人出的都是假题 我感觉这个好像大 ...
随机推荐
- Pots--poj(bfs,输出路径)
http://poj.org/problem?id=3414 题意: 给你两个容量为a,b的杯子:有3个操作: 1:FILL(i):把第i个杯子从水库中装满: 2:DROP(i):把第i个杯子清空: ...
- linux find 命令
Linux中find常见用法示例 ·find path -option [ -print ] [ -exec -ok command ] {} \; find命令的参数 ...
- 访问GitLab的PostgreSQL数据库-(3)
1.登陆gitlab的安装服务查看配置文件 cat /var/opt/gitlab/gitlab-rails/etc/database.yml production: adapter: postgre ...
- 前端写一个月的原生 Android 是如何一种体验?
版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/j01G58UC80251/article/details/79017706 一个前端程序猿的一个月原 ...
- makefile 中wildcard
在Makefile规则中,通配符会被自动展开.但在变量的定义和函数引用时,通配符将失效.这种情况下如果需要通配符有效,就需要使用函数“wildcard”,它的用法是:$(wildcard PATTER ...
- 字符串最长子串匹配-dp矩阵[转载]
转自:https://blog.csdn.net/zls986992484/article/details/69863710 题目描述:求最长公共子串,sea和eat.它们的最长公共子串为ea,长度为 ...
- 浅谈远程登录时,ssh的加密原理
SSH:Secure Shell,是一种网络安全协议,主要用于登录远程计算机的加密过程. 登录方式主要有两种: 1.基于用户密码的登录方式: 加密原理: 当服务器知道用户请求登录时,服务器会把 ...
- X-Forwarded-For 负载均衡 7 层 HTTP 模式获取来访客户端真实 IP 的方法(IIS/Apache/Nginx/Tomcat)
https://help.aliyun.com/knowledge_detail/13051859.html?pos=1 1.IIS 6 配置方案2.IIS 7 配置方案3.Apache 配置方案4. ...
- Chapter 7 Integrity(完整性), Views(视图), Security(安全性), and Catalogs(目录)
from Database Design to Physical Form CREATE TABLE integrity constraints (完整性约束) CREATE VIEW Securit ...
- Summary: Lowest Common Ancestor in a Binary Tree & Shortest Path In a Binary Tree
转自:Pavel's Blog Now let's say we want to find the LCA for nodes 4 and 9, we will need to traverse th ...