【打分策略】Elasticsearch打分策略详解与explain手把手计算
一、目的
一个搜索引擎使用的时候必定需要排序这个模块,一般情况下在不选择按照某一字段排序的情况下,都是按照打分的高低进行一个默认排序的,所以如果正式使用的话,必须对默认排序的打分策略有一个详细的了解才可以,否则被问起来为什么这个在前面,那个在后面不好办,因此对Elasticsearch的打分策略详细的看了下,虽然说还不是了解的很全部,但是大部分都看的差不多了,结合理论以及搜索的结果,做一个简单的介绍
二、Elasticsearch的打分公式
Elasticsearch的默认打分公式是lucene的打分公式,主要分为两部分的计算,一部分是计算query部分的得分,另一部分是计算field部分的得分,下面给出ES官网给出的打分公式:
- score(q,d) =
- queryNorm(q)
- · coord(q,d)
- · ∑ (
- tf(t in d)
- · idf(t)²
- · t.getBoost()
- · norm(t,d)
- ) (t in q)
在此给每一个部分做一个解释
queryNorm(q):
对查询进行一个归一化,不影响排序,因为对于同一个查询这个值是相同的,但是对term于ES来说,必须在分片是1的时候才不影响排序,否则的话,还是会有一些细小的区别,有几个分片就会有几个不同的queryNorm值
queryNorm(q)=1 / √sumOfSquaredWeights
上述公式是ES官网的公式,这是在默认query boost为1,并且在默认term boost为1 的情况下的打分,其中
sumOfSquaredWeights =idf(t1)*idf(t1)+idf(t2)*idf(t2)+...+idf(tn)*idf(tn)
其中n为在query里面切成term的个数,但是上面全部是在默认为1的情况下的计算,实际上的计算公式如下所示:
coord(q,d):
coord(q,d)是一个协调因子它的值如下:
- coord(q,d)=overlap/maxoverlap
其中overlap是检索命中query中term的个数,maxoverlap是query中总共的term个数,例如查询词为“无线通信”,使用默认分词器,如果文档为“通知他们开会”,只会有一个“通”命中,这个时候它的值就是1/4=0.25
tf(t in d):
即term t在文档中出现的个数,它的计算公式官网给出的是:
- tf(t in d) = √frequency
即出现的个数进行开方,这个没什么可以讲述的,实际打分也是如此
idf(t):
这个的意思是出现的逆词频数,即召回的文档在总文档中出现过多少次,这个的计算在ES中与lucene中有些区别,只有在分片数为1的情况下,与lucene的计算是一致的,如果不唯一,那么每一个分片都有一个不同的idf的值,它的计算方式如下所示:
- idf(t) = 1 + log ( numDocs / (docFreq + 1))
其中,log是以e为底的,不是以10或者以2为底,这点需要注意,numDocs是指所有的文档个数,如果有分片的话,就是指的是在当前分片下总的文档个数,docFreq是指召回文档的个数,如果有分片对应的也是在当前分片下召回的个数,这点是计算的时候与lucene不同之处,如果想验证是否正确,只需将分片shard的个数设置为1即可。
t.getboost():
对于每一个term的权值,没仔细研究这个项,个人理解的是,如果对一个field设置boost,那么如果在这个boost召回的话,每一个term的boost都是该field的boost
norm(t,d):
对于field的标准化因子,在官方给的解释是field越短,如果召回的话权重越大,例如搜索无线通信,一个是很长的内容,但都是包含这几个字,但是并不是我们想要的,另外一个内容很短,但是完整包含了无线通信,我们不能因为后面的只出现了一次就认为权重是低的,相反,权重应当是更高的,其计算公式如下所示:
其中d.getboost表明如果该文档权重越大那么久越重要
f.getboost表明该field的权值越大,越重要
lengthnorm表示该field越长,越不重要,越短,越重要,在官方文档给出的公式中,默认boost全部为1,在此给出官方文档的打分公式:
- norm(d) = 1 / √numTerms
该值在计算的时候总是无法对上,查询网上的资料说是在打分的时候将结果先进行压缩,然后解压缩,所以结果跟原始值对不上,个人理解有点像量化的过程,因为在实际explain的时候发现该值有一定的规律性
三、实际的打分explain
在实际的时候,例如搜索“无线通信”,如下图所示,因为一些私人原因,将一些字段打码,查询的时候设置explain为true,如下图所示:
因为使用的是默认的分词器,所以最后的结果是将“无线通信”分成了四个字,并且认为是四个term来进行计算,最后将计算的结果进行相加得到最后的得分0.7605926,这个分数是“无”的得分:
最后的得分是0.7605926=0.118954286+0.1808154+0.14515185+0.31567,与上述符合,因为四个词都出现了所以在这里面的coord=1,总分数的计算知道后,我们单看每一部分的得分的计算,以“无”为例进行介绍:
其中每一个term内部分为两部分的分数,一部分是queryweight,一部分是fieldweight,其中总分数=queryweight*fieldweight
例如此处queryweight=0.51195854,fieldWeight=0.2323514,所以总的分数就是0.118954286
queryweigth计算:
对于queryweight部分的计算分为两个部分idf和querynorm,其中idf的值是2.8618271,这个值是如何计算的呢
idf=1+ln(1995/(309+1))=2.8618271,说明在分片四里面共有1995个文档,召回了包含“无”的309个文档,因此为这个值
querynorm部分的计算:根据上面“无”“线”“通”“信”四个的分数计算,可以看到,idf的值分别为
无:2.8618271
线:3.1053379
通:2.235371
信:2.901306
所以按照计算公式
- querynorm=1 / √2.8618271*2.8618271+3.1053379*3.1053379+2.235371*2.235371+2.901306*2.901306=0.1788922
所以queryweight部分的值是0.1788922*2.8618271=0.51195854
再次总结下此处的公式:queryweight=idf*queryNorm(d)
fieldweight部分计算:
idf的计算上边已经算过,在此不详细叙述
tf的值是在此处出现3次,所以为√3=1.7320508
fieldnorm的值不知道如何计算,按照公式计算不出来explain的值,网上资料说是编解码导致的,哪位朋友知道如何计算麻烦回复下,多谢
总结下fieldweight部分的计算公式:fieldweight=idf*tf*fieldnorm=1.7320508*2.8618271*0.046875=0.2323514
所以总体的计算就是
- score=queryweight*fieldweight=idf*queryNorm(d)*idf*tf*fieldnorm=coord*queryNorm(d)*tf*idf^2*fieldnorm
四、参考文档
http://www.cnblogs.com/forfuture1978/archive/2010/03/07/1680007.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/scoring-theory.html#field-norm
【打分策略】Elasticsearch打分策略详解与explain手把手计算的更多相关文章
- Elasticsearch SQL用法详解
Elasticsearch SQL用法详解 mp.weixin.qq.com 本文详细介绍了不同版本中Elasticsearch SQL的使用方法,总结了实际中常用的方法和操作,并给出了几个具体例子 ...
- Lucene打分规则与Similarity模块详解
搜索排序结果的控制 Lucnen作为搜索引擎中,应用最为广泛和成功的开源框架,它对搜索结果的排序,有一套十分完整的机制来控制:但我们控制搜索结果排序的目的永远只有一个,那就是信息过滤,让用户快速,准确 ...
- SQL Server 执行计划操作符详解(3)——计算标量(Compute Scalar)
接上文:SQL Server 执行计划操作符详解(2)--串联(Concatenation ) 前言: 前面两篇文章介绍了关于串联(Concatenation)和断言(Assert)操作符,本文介绍第 ...
- elasticsearch 安装配置详解
一.安装 简单的安装与启动于前文ElasticSearch初探(一)已有讲述,这里不再重复说明. 二.启动 1.自带脚本启动 1)bin/elasticsearch,不太任何参数,默认在前端启动 2) ...
- 【elasticsearceh】elasticsearch.yml配置文件详解
主要内容如下: cluster.name: elasticsearch 配置es的集群名称,默认是elasticsearch,es会自动发现在同一网段下的es,如果在同一网段下有多个集群,就可以用这个 ...
- ElasticSearch Java api 详解_V1.0
/×××××××××××××××××××××××××××××××××××××××××/ Author:xxx0624 HomePage:http://www.cnblogs.com/xxx0624/ ...
- Elasticsearch之配置详解
Cluster 集群名称,默认为elasticsearch: cluster.name: elasticsearch 设置一个节点的并发数量,有两种情况,一种是在初始复苏过程中: cluster.ro ...
- spring-boot-starter-data-elasticsearch 整合elasticsearch 5.x详解
1.使用原因 近期公司在开发新的项目用到了elasticsearch ,因为项目框架用的spring Cloud所以依赖全用的是starter,从网上找的信息比较旧,并没有整合elasticsearc ...
- Elasticsearch date 类型详解
引言 一直对 elasticsearch 中的 date 类型认识比较模糊,而且在使用中又比较常见,这次决定多花些时间,彻底弄懂它,希望能对用到的同学提供帮助. 注意:本文测试使用是 elastics ...
随机推荐
- webpack笔记二——entry
entry是输入目录文件,有三种形式 1.对象键值对形式 entry: { main: './src/script/main.js', b: './src/script/b.js' }, 注意的是输出 ...
- WebDriver 常用操作
1 浏览器操作 2 窗口和弹框操作 3 cookies 操作 4 简单对象的定位 5 页面元素操作 6 鼠标事件 7 键盘事件 1 浏览器操作 #属性: driver.current_url #用于获 ...
- 014-Spring Boot web【三】拦截器HandlerInterceptor、异常处理页面,全局异常处理ControllerAdvice
一.拦截器HandlerInterceptor 1.1.HandlerInterceptor接口说明 preHandle,congtroller执行前,如果返回false请求终端 postHandle ...
- 怎样解决VMware虚拟机无法连接外网问题
安装上虚拟机之后,再安装上linux之后,有时会出现ping不通物理机的ip和任何外网包括网关的ip的问题.虚拟机的网卡是桥接状态.下面就让我为大家演示下一下,怎么让虚拟机重新ping通物理机. 工具 ...
- 通过反射,获取linkedHashMap的最后一个键值对。对map按照值进行排序。
1:通过反射,获取linkedHashMap的最后一个键值对. Map<Integer, Integer> map = new LinkedHashMap<>(); Field ...
- PAT Maximum Subsequence Sum[最大子序列和,简单dp]
1007 Maximum Subsequence Sum (25)(25 分) Given a sequence of K integers { N~1~, N~2~, ..., N~K~ }. A ...
- java中Integer 和String 之间的转换
java中Integer 和String 之间的转换 将数组转换成字符串:char[] array = {'a','b','c','d','e'};String str = new String(ar ...
- webbench,简单、实用!
官网:http://home.tiscali.cz/~cz210552/webbench.html 1.下载并安装 # wget http://home.tiscali.cz/~cz210552/ ...
- C#中DataTable
.C#中DataTable技术学习 2009-09-10 14:37:18 阅读1496 评论0 字号:大中小 订阅 . 1.在DataTable中执行DataTable.Select(" ...
- 学号20155311 2016-2017-2 《Java程序设计》第9周学习总结
学号 2016-2017-2 <Java程序设计>第9周学习总结 教材学习内容总结 整合数据库 JDBC(Java DataBase Connectivity)即java数据库连接,是一种 ...