Run Test Case on Spark
今天有哥们问到怎样对Spark进行单元測试。如今将Sbt的測试方法写出来,例如以下:
对Spark的test case进行測试的时候能够用sbt的test命令:
一、測试所有test case
sbt/sbt test
二、測试单个test case
sbt/sbt "test-only *DriverSuite*"
以下举个样例:
这个Test Case是位于$SPARK_HOME/core/src/test/scala/org/apache/spark/DriverSuite.scala
FunSuit是scalatest里面的測试Suit。要继承它。
这里主要是一个回归測试,測试Spark程序正常结束后,Driver会不会正常退出。
注:我就拿这个样例模拟一下,測试成功和測试失败的情景,这个样例和DriverSuite的測试目的全然不一致。仅仅是演示作用。 :)
以下是正常执行退出的样例:
package org.apache.spark import java.io.File import org.apache.log4j.Logger
import org.apache.log4j.Level import org.scalatest.FunSuite
import org.scalatest.concurrent.Timeouts
import org.scalatest.prop.TableDrivenPropertyChecks._
import org.scalatest.time.SpanSugar._ import org.apache.spark.util.Utils import scala.language.postfixOps class DriverSuite extends FunSuite with Timeouts { test("driver should exit after finishing") {
val sparkHome = sys.env.get("SPARK_HOME").orElse(sys.props.get("spark.home")).get
// Regression test for SPARK-530: "Spark driver process doesn't exit after finishing"
val masters = Table(("master"), ("local"), ("local-cluster[2,1,512]"))
forAll(masters) { (master: String) =>
failAfter(60 seconds) {
Utils.executeAndGetOutput(
Seq("./bin/spark-class", "org.apache.spark.DriverWithoutCleanup", master),
new File(sparkHome),
Map("SPARK_TESTING" -> "1", "SPARK_HOME" -> sparkHome))
}
}
}
} /**
* Program that creates a Spark driver but doesn't call SparkContext.stop() or
* Sys.exit() after finishing.
*/
object DriverWithoutCleanup {
def main(args: Array[String]) {
Logger.getRootLogger().setLevel(Level.WARN)
val sc = new SparkContext(args(0), "DriverWithoutCleanup")
sc.parallelize(1 to 100, 4).count()
}
}
executeAndGetOutput方法接受一个command命令,调用spark-class来执行DriverWithoutCleanup类。
/**
* Execute a command and get its output, throwing an exception if it yields a code other than 0.
*/
def executeAndGetOutput(command: Seq[String], workingDir: File = new File("."),
extraEnvironment: Map[String, String] = Map.empty): String = {
val builder = new ProcessBuilder(command: _*)
.directory(workingDir)
val environment = builder.environment()
for ((key, value) <- extraEnvironment) {
environment.put(key, value)
}
val process = builder.start() //启动一个进程来执行spark job
new Thread("read stderr for " + command(0)) {
override def run() {
for (line <- Source.fromInputStream(process.getErrorStream).getLines) {
System.err.println(line)
}
}
}.start()
val output = new StringBuffer
val stdoutThread = new Thread("read stdout for " + command(0)) { //读取spark job的输出
override def run() {
for (line <- Source.fromInputStream(process.getInputStream).getLines) {
output.append(line)
}
}
}
stdoutThread.start()
val exitCode = process.waitFor()
stdoutThread.join() // Wait for it to finish reading output
if (exitCode != 0) {
throw new SparkException("Process " + command + " exited with code " + exitCode)
}
output.toString //返回spark job的输出
}
执行第二个命令能够看到执行结果:
sbt/sbt "test-only *DriverSuite*"
执行结果:
[info] Compiling 1 Scala source to /app/hadoop/spark-1.0.1/core/target/scala-2.10/test-classes...
[info] DriverSuite: //执行DriverSuit这个TestSuit
Spark assembly has been built with Hive, including Datanucleus jars on classpath
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/app/hadoop/spark-1.0.1/lib_managed/jars/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/app/hadoop/spark-1.0.1/assembly/target/scala-2.10/spark-assembly-1.0.1-hadoop0.20.2-cdh3u5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
14/08/14 18:20:15 WARN spark.SparkConf:
SPARK_CLASSPATH was detected (set to '/home/hadoop/src/hadoop/lib/:/app/hadoop/sparklib/*:/app/hadoop/spark-1.0.1/lib_managed/jars/*').
This is deprecated in Spark 1.0+. Please instead use:
- ./spark-submit with --driver-class-path to augment the driver classpath
- spark.executor.extraClassPath to augment the executor classpath 14/08/14 18:20:15 WARN spark.SparkConf: Setting 'spark.executor.extraClassPath' to '/home/hadoop/src/hadoop/lib/:/app/hadoop/sparklib/*:/app/hadoop/spark-1.0.1/lib_managed/jars/*' as a work-around.
14/08/14 18:20:15 WARN spark.SparkConf: Setting 'spark.driver.extraClassPath' to '/home/hadoop/src/hadoop/lib/:/app/hadoop/sparklib/*:/app/hadoop/spark-1.0.1/lib_managed/jars/*' as a work-around.
Spark assembly has been built with Hive, including Datanucleus jars on classpath
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/app/hadoop/spark-1.0.1/lib_managed/jars/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/app/hadoop/spark-1.0.1/assembly/target/scala-2.10/spark-assembly-1.0.1-hadoop0.20.2-cdh3u5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
14/08/14 18:20:19 WARN spark.SparkConf:
SPARK_CLASSPATH was detected (set to '/home/hadoop/src/hadoop/lib/:/app/hadoop/sparklib/*:/app/hadoop/spark-1.0.1/lib_managed/jars/*').
This is deprecated in Spark 1.0+. Please instead use:
- ./spark-submit with --driver-class-path to augment the driver classpath
- spark.executor.extraClassPath to augment the executor classpath 14/08/14 18:20:19 WARN spark.SparkConf: Setting 'spark.executor.extraClassPath' to '/home/hadoop/src/hadoop/lib/:/app/hadoop/sparklib/*:/app/hadoop/spark-1.0.1/lib_managed/jars/*' as a work-around.
14/08/14 18:20:19 WARN spark.SparkConf: Setting 'spark.driver.extraClassPath' to '/home/hadoop/src/hadoop/lib/:/app/hadoop/sparklib/*:/app/hadoop/spark-1.0.1/lib_managed/jars/*' as a work-around.
Spark assembly has been built with Hive, including Datanucleus jars on classpath
Spark assembly has been built with Hive, including Datanucleus jars on classpath
[info] - driver should exit after finishing
[info] ScalaTest
[info] Run completed in 12 seconds, 586 milliseconds.
[info] Total number of tests run: 1
[info] Suites: completed 1, aborted 0
[info] Tests: succeeded 1, failed 0, canceled 0, ignored 0, pending 0
[info] All tests passed.
[info] Passed: Total 1, Failed 0, Errors 0, Passed 1
[success] Total time: 76 s, completed Aug 14, 2014 6:20:26 PM
測试通过, Total 1, Failed 0, Errors 0。 Passed 1。
这里假设我们略微将test case 改改。让spark job抛异常,那么这个,这样test case 就会failed掉。例如以下:
object DriverWithoutCleanup {
def main(args: Array[String]) {
Logger.getRootLogger().setLevel(Level.WARN)
val sc = new SparkContext(args(0), "DriverWithoutCleanup")
sc.parallelize(1 to 100, 4).count()
throw new RuntimeException("OopsOutOfMemory, haha, not real OOM, don't worry!") //加入此行
}
那么。再次执行測试:
会发现错误
[info] DriverSuite:
Spark assembly has been built with Hive, including Datanucleus jars on classpath
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/app/hadoop/spark-1.0.1/lib_managed/jars/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/app/hadoop/spark-1.0.1/assembly/target/scala-2.10/spark-assembly-1.0.1-hadoop0.20.2-cdh3u5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
14/08/14 18:40:07 WARN spark.SparkConf:
SPARK_CLASSPATH was detected (set to '/home/hadoop/src/hadoop/lib/:/app/hadoop/sparklib/*:/app/hadoop/spark-1.0.1/lib_managed/jars/*').
This is deprecated in Spark 1.0+. Please instead use:
- ./spark-submit with --driver-class-path to augment the driver classpath
- spark.executor.extraClassPath to augment the executor classpath 14/08/14 18:40:07 WARN spark.SparkConf: Setting 'spark.executor.extraClassPath' to '/home/hadoop/src/hadoop/lib/:/app/hadoop/sparklib/*:/app/hadoop/spark-1.0.1/lib_managed/jars/*' as a work-around.
14/08/14 18:40:07 WARN spark.SparkConf: Setting 'spark.driver.extraClassPath' to '/home/hadoop/src/hadoop/lib/:/app/hadoop/sparklib/*:/app/hadoop/spark-1.0.1/lib_managed/jars/*' as a work-around.
Exception in thread "main" java.lang.RuntimeException: OopsOutOfMemory, haha, not real OOM, don't worry! //自己定义抛异常使spark job执行失败,打印出了异常堆栈,測试用例失败
at org.apache.spark.DriverWithoutCleanup$.main(DriverSuite.scala:60)
at org.apache.spark.DriverWithoutCleanup.main(DriverSuite.scala)
[info] - driver should exit after finishing *** FAILED ***
[info] SparkException was thrown during property evaluation. (DriverSuite.scala:40)
[info] Message: Process List(./bin/spark-class, org.apache.spark.DriverWithoutCleanup, local) exited with code 1
[info] Occurred at table row 0 (zero based, not counting headings), which had values (
[info] master = local
[info] )
[info] ScalaTest
[info] Run completed in 4 seconds, 765 milliseconds.
[info] Total number of tests run: 1
[info] Suites: completed 1, aborted 0
[info] Tests: succeeded 0, failed 1, canceled 0, ignored 0, pending 0
[info] *** 1 TEST FAILED ***
[error] Failed: Total 1, Failed 1, Errors 0, Passed 0
[error] Failed tests:
[error] org.apache.spark.DriverSuite
[error] (core/test:testOnly) sbt.TestsFailedException: Tests unsuccessful
[error] Total time: 14 s, completed Aug 14, 2014 6:40:10 PM
能够看到TEST FAILED。
三、 总结:
假设想做contributor,这一关必须过了。
——EOF——
原创文章,转载请注明,出自http://blog.csdn.net/oopsoom/article/details/38555173
Run Test Case on Spark的更多相关文章
- Spark术语
1.resilient distributed dataset (RDD) The core programming abstraction in Spark, consisting of a fau ...
- Spark技术内幕: Shuffle详解(三)
前两篇文章写了Shuffle Read的一些实现细节.但是要想彻底理清楚这里边的实现逻辑,还是需要更多篇幅的:本篇开始,将按照Job的执行顺序,来讲解Shuffle.即,结果数据(ShuffleMap ...
- APACHE SPARK 2.0 API IMPROVEMENTS: RDD, DATAFRAME, DATASET AND SQL
What’s New, What’s Changed and How to get Started. Are you ready for Apache Spark 2.0? If you are ju ...
- How Cigna Tuned Its Spark Streaming App for Real-time Processing with Apache Kafka
Explore the configuration changes that Cigna’s Big Data Analytics team has made to optimize the perf ...
- Building Lambda Architecture with Spark Streaming
The versatility of Apache Spark’s API for both batch/ETL and streaming workloads brings the promise ...
- 在Java Web中使用Spark MLlib训练的模型
PMML是一种通用的配置文件,只要遵循标准的配置文件,就可以在Spark中训练机器学习模型,然后再web接口端去使用.目前应用最广的就是基于Jpmml来加载模型在javaweb中应用,这样就可以实现跨 ...
- Spark记录-官网学习配置篇(一)
参考http://spark.apache.org/docs/latest/configuration.html Spark提供三个位置来配置系统: Spark属性控制大多数应用程序参数,可以使用Sp ...
- Spark Structured Stream 2
❤Limitations of DStream API Batch Time Constraint application级别的设置. 不支持EventTime event time 比process ...
- spark属性
应用属性 属性名 缺省值 意义 spark.app.name (none) The name of your application. This will appear in the UI and i ...
随机推荐
- 波吉亚家族第一季/全集The Borgias 1迅雷下载
波吉亚家族 第一季 The Borgias Season 1 (2011)本季看点:<波吉亚家族>是一个非常复杂的故事,是现代人描绘这个臭名昭著的王朝家族过往历史的一副有趣又坦率的肖像画. ...
- HTML5实现简单圆周运动示例
一.使用JS实现圆周运动 根据指定圆心.半径,在定时器中移动固定的弧度,重绘圆圈的位置 源代码: <!DOCTYPE html> <html lang="en"& ...
- [转]php cli命令 自定义参数传递
FROM :http://www.cnblogs.com/zcy_soft/archive/2011/12/10/2283437.html 所有的PHP发行版,不论是编译自源代码的版本还是预创建的版本 ...
- TFS中查看我的所有签入迁出记录 TFS 怎么查看所有的修改
[源代码资源管理器]=>左边窗口目录树选中一行项目=>右键 查看历史记录=>在历史记录中,双击变更集即可以看到某一次变更的所有记录.
- 一种多线程写日志文件的解决方案 c#源代码演示
using System;using System.Collections.Generic;using System.Collections;using System.Text;using Syste ...
- iPhone跳转的动画效果类型及实现方法 CATransition
实现iphone漂亮的动画效果主要有两种方法,一种是UIView层面的,一种是使用CATransition进行更低层次的控制, 第一种是UIView,UIView方式可能在低层也是使用CATransi ...
- linux下编程epoll实现将GPS定位信息上报到服务器
操作系统:CentOS 开发板:fl2440 开发模块:A7(GPS/GPRS),RT3070(无线网卡) ********************************************** ...
- ARDC Android 远程桌面助手 录屏 演示 MD
Markdown版本笔记 我的GitHub首页 我的博客 我的微信 我的邮箱 MyAndroidBlogs baiqiantao baiqiantao bqt20094 baiqiantao@sina ...
- 异常 Exception 堆栈跟踪 异常捕获 MD
Markdown版本笔记 我的GitHub首页 我的博客 我的微信 我的邮箱 MyAndroidBlogs baiqiantao baiqiantao bqt20094 baiqiantao@sina ...
- 【python3】集合set (转)
https://www.cnblogs.com/onepeace/p/4791578.html set原理 Python 还 包 含 了 一 个 数 据 类 型—— set ( 集 合 ) . 集 合 ...