前言

支持向量机,也即SVM,号称分类算法,甚至机器学习界老大哥。其理论优美,发展相对完善,是非常受到推崇的算法。

本文将讲解的SVM基于一种最流行的实现 - 序列最小优化,也即SMO。

另外还将讲解将SVM扩展到非线性可分的数据集上的大致方法。

预备术语

1. 分割超平面:就是决策边界

2. 间隔:样本点到分割超平面的距离

3. 支持向量:离分割超平面距离最近的样本点

算法原理

在前一篇文章 - 逻辑回归中,讲到了通过拟合直线来进行分类。

而拟合的中心思路是求错误估计函数取得最小值,得到的拟合直线是到各样本点距离和最小的那条直线。

然而,这样的做法很多时候未必是最合适的。

请看下图:

一般来说,逻辑回归得到的直线线段会是B或者C这样的形式。而很显然,从分类算法的健壮性来说,D才是最佳的拟合线段。

SVM分类算法就是基于此思想:找到具有最小间隔的样本点,然后拟合出一个到这些样本点距离和最大的线段/平面。

如何计算最优超平面

1. 首先根据算法思想 - "找到具有最小间隔的样本点,然后拟合出一个到这些样本点距离和最大的线段/平面。" 写出目标函数:

该式子的解就是待求的回归系数。

然而,这是一个嵌套优化问题,非常难进行直接优化求解。为了解这个式子,还需要以下步骤。

2. 不去计算内层的min优化,而是将距离值界定到一个范围 - 大于1,即最近的样本点,也即支持向量到超平面的距离为1。下图可以清楚表示这个意思:

去掉min操作,代之以界定:label * (wTx + b) >= 1。

3. 这样得到的式子就是一个带不等式的优化问题,可以采用拉格朗日乘子法(KKT条件)去求解。

具体步骤推论本文不给出。推导结果为:

另外,可加入松弛系数 C,用于控制 "最大化间隔" 和"保证大部分点的函数间隔小于1.0" 这两个目标的权重。

将 α >= 0 条件改为 C >= α >= 0 即可。

α 是用于求解过程中的一个向量,它和要求的结果回归系数是一一对应的关系。

将其中的 α 解出后,便可依据如下两式子(均为推导过程中出现的式子)进行转换得到回归系数:

说明: 要透彻理解完整的数学推导过程需要一些时间,可参考某位大牛的文章http://blog.csdn.net/v_july_v/article/details/7624837。

使用SMO - 高效优化算法求解 α 值

算法思想:

每次循环中选择两个 α 进行优化处理。一旦找到一对合适的 α,那么就增大其中一个减小另外一个。

所谓合适,是指必须符合两个条件:1. 两个 α 值必须要在 α 分隔边界之外 2. 这两个α 还没有进行过区间化处理或者不在边界上。

使用SMO求解 α 伪代码:

 创建一个 alpha 向量并将其初始化为全0
当迭代次数小于最大迭代次数(外循环):
对数据集中的每个向量(内循环):
如果该数据向量可以被优化
随机选择另外一个数据向量
同时优化这两个向量
如果都不能被优化,推出内循环。
如果所有向量都没有被优化,则增加迭代数目,继续下一次的循环。

实现及测试代码:

 #!/usr/bin/env python
# -*- coding:UTF-8 -*- '''
Created on 20**-**-** @author: fangmeng
''' from numpy import *
from time import sleep #=====================================
# 输入:
# fileName: 数据文件
# 输出:
# dataMat: 测试数据集
# labelMat: 测试分类标签集
#=====================================
def loadDataSet(fileName):
'载入数据' dataMat = []; labelMat = []
fr = open(fileName)
for line in fr.readlines():
lineArr = line.strip().split('\t')
dataMat.append([float(lineArr[0]), float(lineArr[1])])
labelMat.append(float(lineArr[2]))
return dataMat,labelMat #=====================================
# 输入:
# i: 返回结果不等于该参数
# m: 指定随机范围的参数
# 输出:
# j: 0-m内不等于i的一个随机数
#=====================================
def selectJrand(i,m):
'随机取数' j=i
while (j==i):
j = int(random.uniform(0,m))
return j #=====================================
# 输入:
# aj: 数据对象
# H: 数据对象最大值
# L: 数据对象最小值
# 输出:
# aj: 定界后的数据对象。最大H 最小L
#=====================================
def clipAlpha(aj,H,L):
'为aj定界' if aj > H:
aj = H
if L > aj:
aj = L
return aj #=====================================
# 输入:
# dataMatIn: 数据集
# classLabels: 分类标签集
# C: 松弛参数
# toler: 荣错率
# maxIter: 最大循环次数
# 输出:
# b: 偏移
# alphas: 拉格朗日对偶因子
#=====================================
def smoSimple(dataMatIn, classLabels, C, toler, maxIter):
'SMO算法求解alpha' # 数据格式转化
dataMatrix = mat(dataMatIn);
labelMat = mat(classLabels).transpose()
m,n = shape(dataMatrix)
alphas = mat(zeros((m,1))) iter = 0
b = 0
while (iter < maxIter):
# alpha 改变标记
alphaPairsChanged = 0 # 对所有数据集
for i in range(m):
# 预测结果
fXi = float(multiply(alphas,labelMat).T*(dataMatrix*dataMatrix[i,:].T)) + b
# 预测结果与实际的差值
Ei = fXi - float(labelMat[i])
# 如果差值太大则进行优化
if ((labelMat[i]*Ei < -toler) and (alphas[i] < C)) or ((labelMat[i]*Ei > toler) and (alphas[i] > 0)):
# 随机选择另外一个样本
j = selectJrand(i,m)
# 计算另外一个样本的预测结果以及差值
fXj = float(multiply(alphas,labelMat).T*(dataMatrix*dataMatrix[j,:].T)) + b
Ej = fXj - float(labelMat[j])
# 暂存当前alpha值对
alphaIold = alphas[i].copy();
alphaJold = alphas[j].copy();
# 确定alpha的最大最小值
if (labelMat[i] != labelMat[j]):
L = max(0, alphas[j] - alphas[i])
H = min(C, C + alphas[j] - alphas[i])
else:
L = max(0, alphas[j] + alphas[i] - C)
H = min(C, alphas[j] + alphas[i])
if L==H:
pass
# eta为alphas[j]的最优修改量
eta = 2.0 * dataMatrix[i,:]*dataMatrix[j,:].T - dataMatrix[i,:]*dataMatrix[i,:].T - dataMatrix[j,:]*dataMatrix[j,:].T
if eta >= 0:
print "eta>=0"; continue
# 订正alphas[j]
alphas[j] -= labelMat[j]*(Ei - Ej)/eta
alphas[j] = clipAlpha(alphas[j],H,L)
# 如果alphas[j]发生了轻微变化
if (abs(alphas[j] - alphaJold) < 0.00001):
continue
# 订正alphas[i]
alphas[i] += labelMat[j]*labelMat[i]*(alphaJold - alphas[j]) # 订正b
b1 = b - Ei- labelMat[i]*(alphas[i]-alphaIold)*dataMatrix[i,:]*dataMatrix[i,:].T - labelMat[j]*(alphas[j]-alphaJold)*dataMatrix[i,:]*dataMatrix[j,:].T
b2 = b - Ej- labelMat[i]*(alphas[i]-alphaIold)*dataMatrix[i,:]*dataMatrix[j,:].T - labelMat[j]*(alphas[j]-alphaJold)*dataMatrix[j,:]*dataMatrix[j,:].T
if (0 < alphas[i]) and (C > alphas[i]): b = b1
elif (0 < alphas[j]) and (C > alphas[j]): b = b2
else: b = (b1 + b2)/2.0 # 更新修改标记参数
alphaPairsChanged += 1 if (alphaPairsChanged == 0): iter += 1
else: iter = 0 return b,alphas def test():
'测试' dataArr, labelArr = loadDataSet('/home/fangmeng/testSet.txt')
b, alphas = smoSimple(dataArr, labelArr, 0.6, 0.001, 40)
print b
print alphas[alphas>0] if __name__ == '__main__':
test()

其中,testSet.txt数据文件格式为三列,前两列特征,最后一列分类结果。

测试结果:

结果具有随机性,多次运行的结果不一定一致。

得到 alphas 数组和 b 向量就能直接算到回归系数了,参考上述代码 93 行,稍作变换即可。

非线性可分情况的大致解决思路

当数据分析图类似如下的情况:

则显然无法拟合出一条直线来。碰到这种情况的解决办法是使用核函数 - 将在低维处理非线性问题转换为在高维处理线性问题。

也就是说,将在SMO中所有出现了向量内积的地方都替换成核函数处理。

具体的用法,代码本文不做讲解。

小结

支持向量机是分类算法中目前用的最多的,也是最为完善的。

关于支持向量机的讨论远远不会止于此,本文初衷仅仅是对这个算法有一定的了解,认识。

若是在以后的工作中需要用到这方面的知识,还需要全面深入的学习,研究。

第八篇:支持向量机 (SVM)分类器原理分析与基本应用的更多相关文章

  1. 支持向量机 (SVM)分类器原理分析与基本应用

    前言 支持向量机,也即SVM,号称分类算法,甚至机器学习界老大哥.其理论优美,发展相对完善,是非常受到推崇的算法. 本文将讲解的SVM基于一种最流行的实现 - 序列最小优化,也即SMO. 另外还将讲解 ...

  2. Stanford机器学习---第八讲. 支持向量机SVM

    原文: http://blog.csdn.net/abcjennifer/article/details/7849812 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回 ...

  3. 大数据-10-Spark入门之支持向量机SVM分类器

    简介 支持向量机SVM是一种二分类模型.它的基本模型是定义在特征空间上的间隔最大的线性分类器.支持向量机学习方法包含3种模型:线性可分支持向量机.线性支持向量机及非线性支持向量机.当训练数据线性可分时 ...

  4. opencv 支持向量机SVM分类器

    支持向量机SVM是从线性可分情况下的最优分类面提出的.所谓最优分类,就是要求分类线不但能够将两类无错误的分开,而且两类之间的分类间隔最大,前者是保证经验风险最小(为0),而通过后面的讨论我们看到,使分 ...

  5. Mybatis插件原理分析(二)

    在上一篇中Mybatis插件原理分析(一)中我们主要介绍了一下Mybatis插件相关的几个类的源码,并对源码进行了一些解释,接下来我们通过一个简单的插件实现来对Mybatis插件的运行流程进行分析. ...

  6. 一步步教你轻松学支持向量机SVM算法之案例篇2

    一步步教你轻松学支持向量机SVM算法之案例篇2 (白宁超 2018年10月22日10:09:07) 摘要:支持向量机即SVM(Support Vector Machine) ,是一种监督学习算法,属于 ...

  7. 一步步教你轻松学支持向量机SVM算法之理论篇1

    一步步教你轻松学支持向量机SVM算法之理论篇1 (白宁超 2018年10月22日10:03:35) 摘要:支持向量机即SVM(Support Vector Machine) ,是一种监督学习算法,属于 ...

  8. 支持向量机(SVM)原理详解

    SVM简介 支持向量机(support vector machines, SVM)是一种二分类模型,它的基本模型是定义在特征空间上的间隔最大的线性分类器,间隔最大使它有别于感知机:SVM还包括核技巧, ...

  9. 第八篇:支持向量机 (Support Vector Machine)

    前言 本文讲解如何使用R语言中e1071包中的SVM函数进行分类操作,并以一个关于鸢尾花分类的实例演示具体分类步骤. 分析总体流程 1. 载入并了解数据集:2. 对数据集进行训练并生成模型:3. 在此 ...

随机推荐

  1. 为VS定制一个自己的代码生成器 - 自定义工具开发

    自定义工具开发 为VS定制一个自己的代码生成器 如何在Visual Studio中开发自己的代码生成器插件 你必须懂的 T4 模板:深入浅出 Regasm组件注册工具使用方法 Regasm 注册C# ...

  2. 自己实现一个简单的网络音乐mp3播放器

    大繁至简,把思路搞清楚才是最重要的,如何去做依托于使用什么来实现这项功能 列出我使用的基本类 NSURLSessionDataTask 数据获取类 NSFileHandle 数据缓存和数据读取类 Au ...

  3. Linux执行Cron Job失败,在Shell sh下执行却能成功 - 环境变量?

    博客分类: Linux linuxcrontabpermissionetc/profile环境变量  一.我们常常碰到在shell下执行某个命令能够成功,比如执行一个java程序: java -jar ...

  4. mysql数据库的相关练习题及答案

    表结构示意图: 表结构创建语句: class表创建语句 create table ) not null)engine=innodb default charset=utf8; student表创建语句 ...

  5. Scala系统学习(四):Scala变量

    变量是保存存储值的内存位置的名称.这意味着当创建变量时,可以在内存中保留一些空间. 根据变量的数据类型,编译器分配内存并决定可以存储在预留内存中的内容.因此,通过为变量分配不同的数据类型,可以在这些变 ...

  6. Andrew Ng-ML-第十六章-异常检测

    1.问题动机 图1.飞机发动机检测例子 对飞机引擎的例子,如果选取了两个特征x1热量产生度,x2震动强度.并得到如下的图,如果有一个新的引擎来检测其是否正常,x_test,那么此时如果点落在和其他点正 ...

  7. PAT World Cup Betting[非常简单]

    1011 World Cup Betting (20)(20 分) With the 2010 FIFA World Cup running, football fans the world over ...

  8. libsvm使用

    先挖个坑,有空重写svm_scale, svm_train, svm_predict几个代码,给的实在写的不敢恭维 package org.ml.svm; import java.io.File; i ...

  9. [Leetcode] 49. Group Anagrams_Medium

    Given an array of strings, group anagrams together. Example: Input: ["eat", "tea" ...

  10. LeetCode7.反转整数

    给定一个 32 位有符号整数,将整数中的数字进行反转. 示例 1: 输入: 123 输出: 321 示例 2: 输入: -123 输出: -321 示例 3: 输入: 120 输出: 21 注意: 假 ...