HDU 4669 Mutiples on a circle 数位DP
题目链接:
http://acm.hdu.edu.cn/showproblem.php?pid=4669
考察对取模的的理解深不深刻啊,当然还有状态的设计····设d[i][j]表示以第i个数结尾,余数为j的取法数,那么在第i个数后加一个数
那么有递推式int yu =( j * log10( a[i+1] ) + a[i+1] )%k,
d[i+1][yu] += d[i][j] .考虑到这是一个环这样多生成了一个余数,这个余数应该减去,还有++d[i+1][a[i+1]%k].
贴代码:
#include <cstdio>
#include <cmath>
#include <cstring>
#define N1 50005
#define N2 205
int dp[N1][N2];
int a[N1],b[N1],e[N1*];
int solve(int n,int k)
{
e[]=;
for(int i=; i<=n*; ++i)//e[i]存的是10^i%k
e[i] = e[i-]*%k;
for(int i=; i<n; ++i)//初始化dp为0
for(int j=; j<k; ++j)
dp[i][j] =;
for(int i=; i<=n; ++i)
{
scanf("%d",&a[i]);
b[i] = log10(a[i])+;//b[i]存的是每一个数有多少位
}
int s =;
int len=;// 预处理出以第n个数结尾,余数为j取法数
for(int i=n; i > ; --i)
{
s = (a[i]*e[len]+s)%k;
++dp[][s];
len += b[i];
}
int ans= dp[][];
for(int i=; i<n; ++i)
{
for(int j=; j<k; ++j)
dp[i][(j*e[b[i]]+a[i])%k] += dp[i-][j];
s = (s*e[b[i]]+a[i])%k;//这是一个不合法的余数
//如9 6 4 2 8 (9 6 4 2 8)这个余数是964289%k
--dp[i][s];
++dp[i][a[i]%k];//独立的
s = ((s-a[i]*e[len])%k+k)%k;
//计算64289的余数,因为(9*10^len + 64289)%k = s
//那么64289%k = ((s-a[i]*e[len])%k+k)%k;
ans += dp[i][];
}
return ans;
}
int main()
{
// freopen("1004.txt","r",stdin);
int n,k;
while(scanf("%d%d",&n,&k) != EOF)
{
printf("%d\n",solve(n,k));
}
return ;
}
HDU 4669 Mutiples on a circle 数位DP的更多相关文章
- HDU 4669 Mutiples on a circle(环状DP)
题目链接 这是最早看懂题意的一题,状态转移,挺好想..但是比赛时候,就是没有想到怎么去重,而且当时有些情况,也没注意到. 先预处理的dp[0]的情况,就是以p[0]为结尾的情况.之后D就行了,例如样例 ...
- HDU 4669 Mutiples on a circle (DP , 统计)
转载请注明出处,谢谢http://blog.csdn.net/ACM_cxlove?viewmode=contents by---cxlove 题意:给出一个环,每个点是一个数字,取一个子串,使 ...
- HDU 4669 Mutiples on a circle (2013多校7 1004题)
Mutiples on a circle Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Oth ...
- HDU 4665 Mutiples on a circle (圆环DP)
题意 N个数的圆环上有多少种方案可以使得选出来的一段数是K的倍数(N<=50000, K<=200, a[i]<=1000). 思路 多校第七场1004.圆上的DP--大脑太简单处理 ...
- HDU 4669 Mutiples on a circle 不知道该归为哪一类。
题意:给你N个珠宝和一个K,每个珠宝上面都有数字,这个珠宝做成项链,把珠宝上的数字拼起来如果可以整除掉K,那么久说这个数字为wonderful value,问你有多少种方案可以组成WONDERFUL ...
- HDU 4669 Mutiples on a circle 动态规划
参考了官方题解给的方法: 对于处理循环,官方给了一种很巧妙的方法: #include <cstdio> #include <cstring> #include <cstd ...
- 【HDU 3709】 Balanced Number (数位DP)
Balanced Number Problem Description A balanced number is a non-negative integer that can be balanced ...
- HDU 5642 King's Order【数位dp】
题目链接: http://bestcoder.hdu.edu.cn/contests/contest_showproblem.php?cid=677&pid=1003 题意: 求长度为n的序列 ...
- HDU 2089:不要62(数位DP)
http://acm.hdu.edu.cn/showproblem.php?pid=2089 不要62 Problem Description 杭州人称那些傻乎乎粘嗒嗒的人为62(音:laoer) ...
随机推荐
- Cocos2dx 3.x 屏幕适配
Cocos2dx 3.10+Cocos Studio3.10 1.在适配过程中必须明确几个概念: ①Frame大小:这个值在windows/mac/linux下就是创建窗体的大小,在手机上就是屏幕大小 ...
- hihoCoder 1513 小Hi的烦恼
hihoCoder 1513 小Hi的烦恼 思路: 用bitset判断交集个数 代码: #include<bits/stdc++.h> using namespace std; #defi ...
- JSP中scope属性 scope属性决定了JavaBean对象存在的范围
scope属性决定了JavaBean对象存在的范围. scope的可选值包括: ---page(默认值) ---request ---session ---application 1.page范围 ...
- 在WPF中添加Windows Form控件(包括 ocx控件)
首先,需要向项目中的reference添加两个dll,一个是.NET库中的System.Windows.Forms,另外一个是WindowsFormsIntegration,它的位置一般是在C:\ ...
- service几种访问类型(集群外负载均衡访问LoadBalancer , 集群内访问ClusterIP,VPC内网负载均衡LoadBalancer ,集群外访问NodePort)
一.集群外访问(负载均衡) kind: ServiceapiVersion: v1spec: ports: - protocol: TCP port: 4341 targetPort: 8080 no ...
- python-day54--前端之js-DOM对象
一.DOM对象 1.什么是HTML DOM HTML Document Object Model(文档对象模型---标签) 2.功能:定义了访问(查找)和操作HTML文档的标准方法 3.HTML ...
- node搭建本地服务器
随着前端不断发展,node基本已经成为必备,在调试的时候经常需要服务器,在之前的做法通常是去下载一个phpstudy 或者 xampp等启动一个服务,作为一个前端人虽然可以借助各种工具,但是怎么能不懂 ...
- view_countInfo
create view view_countInfo as SELECT a.dwmch, b.dwbh, b.djbh, c.rq, c.shl, c.djbh AS Expr1, d.sp ...
- ADO.NET 体系结构
两个部分 .NET 数据提供者 DataSet 数据提供者 SqlClient 提供者 OleDb 提供者 Odbc 提供者 数据提供者组件 数据对象 DataSet
- bind出现Address already in use解决方法
在socket函数和bind函数之间加入一段代码: // 建立服务器端socket if((server_sockfd = socket(AF_INET, SOCK_STREAM, 0))<0) ...