LITTLE SHOP OF FLOWERS

Time Limit: 1000MS Memory Limit: 10000K

Total Submissions: 19877 Accepted: 9153

Description

You want to arrange the window of your flower shop in a most pleasant way. You have F bunches of flowers, each being of a different kind, and at least as many vases ordered in a row. The vases are glued onto the shelf and are numbered consecutively 1 through V, where V is the number of vases, from left to right so that the vase 1 is the leftmost, and the vase V is the rightmost vase. The bunches are moveable and are uniquely identified by integers between 1 and F. These id-numbers have a significance: They determine the required order of appearance of the flower bunches in the row of vases so that the bunch i must be in a vase to the left of the vase containing bunch j whenever i < j. Suppose, for example, you have bunch of azaleas (id-number=1), a bunch of begonias (id-number=2) and a bunch of carnations (id-number=3). Now, all the bunches must be put into the vases keeping their id-numbers in order. The bunch of azaleas must be in a vase to the left of begonias, and the bunch of begonias must be in a vase to the left of carnations. If there are more vases than bunches of flowers then the excess will be left empty. A vase can hold only one bunch of flowers.

Each vase has a distinct characteristic (just like flowers do). Hence, putting a bunch of flowers in a vase results in a certain aesthetic value, expressed by an integer. The aesthetic values are presented in a table as shown below. Leaving a vase empty has an aesthetic value of 0.

V A S E S

1

2

3

4

5

Bunches

1 (azaleas)

7 23 -5 -24 16

2 (begonias)

5 21 -4 10 23

3 (carnations)

-21

5 -4 -20 20

According to the table, azaleas, for example, would look great in vase 2, but they would look awful in vase 4.

To achieve the most pleasant effect you have to maximize the sum of aesthetic values for the arrangement while keeping the required ordering of the flowers. If more than one arrangement has the maximal sum value, any one of them will be acceptable. You have to produce exactly one arrangement.

Input

The first line contains two numbers: F, V.

The following F lines: Each of these lines contains V integers, so that Aij is given as the jth number on the (i+1)st line of the input file.

1 <= F <= 100 where F is the number of the bunches of flowers. The bunches are numbered 1 through F.

F <= V <= 100 where V is the number of vases.

-50 <= Aij <= 50 where Aij is the aesthetic value obtained by putting the flower bunch i into the vase j.

Output

The first line will contain the sum of aesthetic values for your arrangement.

Sample Input

3 5

7 23 -5 -24 16

5 21 -4 10 23

-21 5 -4 -20 20

Sample Output

53



题意:就是给你一个二维数组,每一行只能选一个,并且选择的数字从上倒下,必须是从左到右的顺序,求最大的和

。动态规划的题目

状态转移方程 dp[i][j]=max(dp[i-1][j-1]+a[i][j],dp[i][j-1]);

这个题目需要注意的是当dp[i][i]即i=j的时候状态转移方程是

dp[i][i]=dp[i-1][i-1]+a[i][i];

为什么呢?因为当i=j的时候,之前的几列都可以确定了,因为要求顺序是从左到右啊,

还有这道题目让我对动态规划更深层的认识是:

时时刻刻要记住动态规划是从子问题不断递推而来,解决最终问题的,一开始我不明白为什么 dp[i][j]=max(dp[i-1][j-1]+a[i][j],dp[i][j-1]);完全没有考虑dp[i-1][j….m],就是对dp[i][j]来说,i-1行,大于j也可以取到啊,为什么不考虑呢?原来,这是因为,对于dp[i][j]这个子问题来说,整个二维数组最大的就是行长度就是j无需考虑比j大的

#include <iostream>
#include <string.h>
#include <math.h>
#include <algorithm>
#include <stdlib.h> using namespace std;
int dp[100][100];//i行,j列,最大的值
int f,v;
int a[100][100];
int main()
{
while(scanf("%d%d",&f,&v)!=EOF)
{
for(int i=1;i<=f;i++)
{
for(int j=1;j<=v;j++)
{
scanf("%d",&a[i][j]);
}
}
memset(dp,0,sizeof(dp));
for(int i=1;i<=f;i++)
{
dp[i][i]=dp[i-1][i-1]+a[i][i];
for(int j=i+1;j<=v;j++)
{
dp[i][j]=max(dp[i-1][j-1]+a[i][j],dp[i][j-1]); }
}
printf("%d\n",dp[f][v]); }
return 0;
}

POJ-1157 LITTLE SHOP OF FLOWERS(动态规划)的更多相关文章

  1. POJ 1157 LITTLE SHOP OF FLOWERS (超级经典dp,两种解法)

    You want to arrange the window of your flower shop in a most pleasant way. You have F bunches of flo ...

  2. sgu 104 Little shop of flowers 解题报告及测试数据

    104. Little shop of flowers time limit per test: 0.25 sec. memory limit per test: 4096 KB 问题: 你想要将你的 ...

  3. [POJ1157]LITTLE SHOP OF FLOWERS

    [POJ1157]LITTLE SHOP OF FLOWERS 试题描述 You want to arrange the window of your flower shop in a most pl ...

  4. SGU 104. Little shop of flowers (DP)

    104. Little shop of flowers time limit per test: 0.25 sec. memory limit per test: 4096 KB PROBLEM Yo ...

  5. 快速切题 sgu104. Little shop of flowers DP 难度:0

    104. Little shop of flowers time limit per test: 0.25 sec. memory limit per test: 4096 KB PROBLEM Yo ...

  6. 动态规划(方案还原):SGU 104 Little shop of flowers

    花店橱窗布置问题 时间限制:3000 ms 问题描述(Problem)    假设你想以最美观的方式布置花店的橱窗,你有F束花,每束花的品种都不一样,同时,你至少有同样数量的花瓶,被按顺序摆成一行.花 ...

  7. [CH5E02] A Little Shop of Flowers

    问题描述 You want to arrange the window of your flower shop in a most pleasant way. You have F bunches o ...

  8. poj1157LITTLE SHOP OF FLOWERS

    Description You want to arrange the window of your flower shop in a most pleasant way. You have F bu ...

  9. POJ 3181 Dollar Dayz(高精度 动态规划)

    题目链接:http://poj.org/problem?id=3181 题目大意:用1,2...K元的硬币,凑成N元的方案数. Sample Input 5 3 Sample Output 5 分析: ...

随机推荐

  1. c#POST请求php接口

    POST请求php接口 /// <summary> /// 指定Post地址使用Get 方式获取全部字符串 /// </summary> /// <param name= ...

  2. 【Python】TF环境

    1.pip show pip 2.python -m pip install --upgrade pip 3.conda list 4.pip install tensorflow 5.pip ins ...

  3. Python模块常用的几种安装方式 【转】

    转自:http://blog.chinaunix.net/uid-23500957-id-3781907.html 一. 单文件模块直接把文件拷贝到 $python_dir/Lib 二. 多文件模块, ...

  4. 解决“Connection to https://dl-ssl.google.com refused”问题

    相信一些人刚开始搞android的安装开发环境的时候会遇到:Failed to fectch URl https://dl-ssl.google.com/android/repository/addo ...

  5. PyQt4显示提示信息

    我们可以为任何窗口部件设置一个气球提示. #!/usr/bin/python # -*- coding:utf-8 -*- import sys from PyQt4 import QtGui fro ...

  6. VS中快捷键修改以及快捷键的查看

    eclipse用习惯了一直想把VS中的alt+/改为自动补全,同时自定义一下C#环境下自动加入命名控件的快捷键,前段时间摸索了一下,找到了比较好的方法 首先是vs中修改快捷键的方法:工具->选项 ...

  7. 树莓派上 安装并 运行opencv

    1.先安装依赖项 OpenCV 2.2以后版本需要使用Cmake生成makefile文件,因此需要先安装cmake. sudo apt-get install build-essential sudo ...

  8. 【MATLAB】评价二值分割结果的函数

    根据PASCAL challenges的标准:intersection-over-union score,所写的matlab评价程序,处理二值图像. 其思想即分割结果与Ground Trueth的交集 ...

  9. sea.js常用接口

    seajs.config 用来对 Sea.js 进行配置. seajs.config({ // 指定需要使用的插件 plugins: ['text', 'shim'], // 设置别名,方便调用 al ...

  10. css布局 - 常规上中下分左右布局的一百种实现方法(更新中...)

    一. 上中下左固定 - fixed+margin 概括:如图,此种布局就是顶部.底部和左侧固定不动,只有中间右侧超出可滚动. html: <header>我是头部position: fix ...