项亮老师在其所著的《推荐系统实战》中写道:

第2章 利用用户行为数据
2.2.2 用户活跃度和物品流行度的关系
【仅仅基于用户行为数据设计的推荐算法一般称为协同过滤算法。学术界对协同过滤算法进行了深入研究,提出了很多方法,比如
基于领域的方法(neighborhood-based)、
隐语义模型(latent factor model)、
基于图的随机游走算法(random walk on graph)等。
 
在这些方法中,最著名的、在业界得到最广泛的算法是基于领域的方法。而基于领域的方法主要包含下面两种算法:
  •  基于用户的协同过滤算法(这种算法给用户推荐和他兴趣相似的其他用户喜欢的物品。)
  • 基于物品的协同过滤算法(这种算法给用户推荐和他之前喜欢的物品相似的物品。)
 

协同过滤推荐基于这样的假设:为用户找到他真正感兴趣的内容的方法是,首先找与他兴趣相似的用户,然后将这些用户感兴趣的东西推荐给该用户。所以该推荐技术最大的优点是对推荐对象没有特殊的要求,能处理非结构化的复杂对象,如音乐、电影等,并能发现用户潜在的兴趣点。协同过滤推荐算法主要是利用用户对项目的评分数据,通过相似邻居查询,找出与当前用户兴趣最相似的用户群,根据这些用户的兴趣偏好为当前用户提供最可能感兴趣的项目推荐列表。为更进一步地说明协同过滤推荐算法的推荐原理,本文以用户对电影的推荐为例进行阐述。表1 是用户对电影评分数据的一个简单矩阵的例子,其中每一行代表一个用户,每一列代表一部电影,矩阵中的元素表示用户对所看电影的评分,评分值一般是从1到5 的整数,评分值越大表明用户喜欢该电影。

对表1 中的数据利用协同过滤推荐算法,系统查找到用户Alice、Bob 和Chris 具有相似的兴趣爱好,因为他们对后3 部电影的评分相同,那么系统会推荐电影Snow white 给Chris,因为与其兴趣偏好相似的用户Alice 和Bob 对该电影的评分值较高。在表2 中,对于新用户Amy,没有评分信息,根据协同过滤推荐算法,无法根据评分信息查找与其兴趣偏好相似的用户,所以系统无法为该用户推荐电影,同样对于新电影Shrek,因缺乏评分信息系统无法感知它的存在,所以也无法将其推荐出去。这就是协同过滤推荐算法所存在的新用户和新项目问题。

【Reference】

1. 《推荐系统实战》

2.  CSDN上关于MF的两个总结:(但是这两个博文关于CF和MF和LFM三者关系的归纳并不太准确)

推荐系统中的矩阵分解总结(https://blog.csdn.net/qq_19446965/article/details/82079367?tdsourcetag=s_pctim_aiomsg

推荐系统:协同过滤collaborative filtering(https://blog.csdn.net/pipisorry/article/details/51788955/?tdsourcetag=s_pctim_aiomsg

RS:关于协同过滤,矩阵分解,LFM隐语义模型三者的区别的更多相关文章

  1. LFM 隐语义模型

    隐语义模型: 物品       表示为长度为k的向量q(每个分量都表示  物品具有某个特征的程度) 用户兴趣 表示为长度为k的向量p(每个分量都表示  用户对某个特征的喜好程度) 用户u对物品i的兴趣 ...

  2. LFM隐语义模型Latent Factor Model

    实际应用 LFM 模型在实际使用中有一个困难,就是很难实现实时推荐.经典的 LFM 模型每次训练都需要扫描所有的用户行为记录,并且需要在用户行为记录上反复迭代来优化参数,所以每次训练都很耗时,实际应用 ...

  3. 海量数据挖掘MMDS week4: 推荐系统之隐语义模型latent semantic analysis

    http://blog.csdn.net/pipisorry/article/details/49256457 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Le ...

  4. 推荐系统| ② 离线推荐&基于隐语义模型的协同过滤推荐

    一.离线推荐服务 离线推荐服务是综合用户所有的历史数据,利用设定的离线统计算法和离线推荐算法周期性的进行结果统计与保存,计算的结果在一定时间周期内是固定不变的,变更的频率取决于算法调度的频率. 离线推 ...

  5. 隐语义模型LFM

      隐语义模型是通过隐含特征,联系用户和物品,基于用户的特征对物品进行自动聚类,然后在用户感兴趣的类中选择物品推荐给用户. 对于推荐系统,常用的算法: USER-CF:给用户推荐和他兴趣相似的用户喜欢 ...

  6. 推荐系统--隐语义模型LFM

    主要介绍 隐语义模型 LFM(latent factor model). 隐语义模型最早在文本挖掘领域被提出,用于找到文本的隐含语义,相关名词有 LSI.pLSA.LDA 等.在推荐领域,隐语义模型也 ...

  7. 【转载】使用LFM(Latent factor model)隐语义模型进行Top-N推荐

    最近在拜读项亮博士的<推荐系统实践>,系统的学习一下推荐系统的相关知识.今天学习了其中的隐语义模型在Top-N推荐中的应用,在此做一个总结. 隐语义模型LFM和LSI,LDA,Topic ...

  8. 使用LFM(Latent factor model)隐语义模型进行Top-N推荐

    最近在拜读项亮博士的<推荐系统实践>,系统的学习一下推荐系统的相关知识.今天学习了其中的隐语义模型在Top-N推荐中的应用,在此做一个总结. 隐语义模型LFM和LSI,LDA,Topic ...

  9. 浅谈隐语义模型和非负矩阵分解NMF

    本文从基础介绍隐语义模型和NMF. 隐语义模型 ”隐语义模型“常常在推荐系统和文本分类中遇到,最初来源于IR领域的LSA(Latent Semantic Analysis),举两个case加快理解. ...

随机推荐

  1. Spark(十二)--性能调优篇

    一段程序只能完成功能是没有用的,只能能够稳定.高效率地运行才是生成环境所需要的. 本篇记录了Spark各个角度的调优技巧,以备不时之需. 一.配置参数的方式和观察性能的方式 额...从最基本的开始讲, ...

  2. 火星坐标、百度坐标、WGS84坐标转换代码(JS、python版)

    火星坐标.百度坐标.WGS84坐标转换代码(JS.python版) 一.JS版本源码 github:https://github.com/wandergis/coordTransform /** * ...

  3. 前端特效: 使用CSS生成的闪光照相机效果

    使用纯CSS生成的照相机效果, 相关CSS代码如下: .container { position: absolute; top: 50%; left: 50%; -webkit-transform: ...

  4. 撼动 IT 界的十大编程语言【转载+整理】

    提这些的目的是要保持关注最新的技术.如果你是一个程序员,想要探究未来技术,那这篇文章是你的必读之选.这里列出了10种编程语言,它们可能会改变IT界的工作方式. 下面这些语言都有其实际的需求,举例来说, ...

  5. KafkaOffsetMonitor 安装

    KafkaOffsetMonitor 安装   1,下载KafkaOffsetMonitor-assembly-0.2.0.jar 2,启动 步骤1:启动ZK(DN1-DN3节点) zkServer. ...

  6. WIN10系统如何使用传统WIN7开始菜单

    安装StartlsBack 默认按WIN键就可以回到WIN7的菜单了 右击WIN可以点击属性,详细设置菜单样式

  7. LintCode: Cosine Similarity

    C++ class Solution { public: /** * @param A: An integer array. * @param B: An integer array. * @retu ...

  8. Linux内核配置:定制配置选项

    很多嵌入式开发人员都需要在Linux内核中添加一些特性,以支持特别的定制硬件. ARM架构的顶层Kconfig文件中,可以看到一个名为System Type的菜单项.在ARM system type提 ...

  9. 去掉JAVA部分依赖的事例

    一.现象 最近做JAVA项目,需要依赖一个外部的JAR包,但是依赖之后,发现eclipse一直workspace,估计是包重复加载的问题 二.问题 使用查看包依赖的命令:mvn dependency: ...

  10. SSM项目的数据库密码加密方案

    项目主要采用:SpringMVC4.3.2.RELEASE +Spring4.3.2.RELEASE + Maven 3.3.3 + druid 1.0.29 + Mybatis 3.2.8 + My ...