上一篇文章指出,ThreadPoolExecutor执行的步骤如下:

  1. 向线程池中添加任务,当任务数量少于corePoolSize时,会自动创建thead来处理这些任务;

  2. 当添加任务数大于corePoolSize且少于maximmPoolSize时,不再创建线程,而是将这些任务放到阻塞队列中,等待被执行;

  3. 接上面2的条件,且当阻塞队列满了之后,继续创建thread,从而加速处理阻塞队列;

  4. 当添加任务大于maximmPoolSize时,根据饱和策略决定是否容许继续向线程池中添加任务,默认的饱和策略是AbortPolicy(直接丢弃)。

我们直接可以通过ThreadPoolExecutor的execute方法源码来跟踪这个流程。首先,由于在execute方法中常常会根据线程池的状态选择判断一些逻辑,因此在介绍该方法之前首先说一下线程池的几种方法。

1. 线程池的状态:

  1. RUNNING:该状态的线程池会接收新任务,也会处理在阻塞队列中等待处理的任务;

  2. SHUTDOWN:该状态的线程池不会再接收新任务,但还会处理已经提交到阻塞队列中等待处理的任务;

  3. STOP:该状态的线程池不会再接收新任务,不会处理在阻塞队列中等待的任务,而且还会中断正在运行的任务;

  4. TIDYING:所有任务都被终止了,workerCount为0,为此状态时还将调用terminated()方法;

  5. TERMINATED:terminated()方法调用完成后变成此状态。

几个状态相关的方法:

runStateOf(int c) 方法:c & 高3位为1,低29位为0的~CAPACITY,用于获取高3位保存的线程池状态

workerCountOf(int c) 方法:c & 高3位为0,低29位为1的CAPACITY,用于获取低29位的线程数量

ctlOf(int rs, int wc) 方法:参数rs表示runState,参数wc表示workerCount,即根据runState和workerCount打包合并成ctl

也就是说32位含义:(高三位表示状态)+ (低29位表示线程数量)。

接下来分析源码:

2. execute代码

public void execute(Runnable command) {
if (command == null)
throw new NullPointerException();
/*
* Proceed in 3 steps:
*
* 1. 如果运行的线程少于corePoolSize,
* 尝试开启一个新线程去运行command,command作为这个线程的第一个任务,并运行
*
* 2. 如果任务成功放入队列,我们仍需要一个双重校验去确认是否应该新建一个线程
*(因为可能存在有些线程在我们上次检查后死了),或者进入这个方法后,pool被关闭了
* 所以我们需要再次检查state,如果线程池停止了需要回滚入队列,
* 如果池中没有线程了,新开启 一个线程
*
* 3. 如果无法将任务入队列(可能队列满了),需要新开区一个线程
* 如果失败了,说明线程池shutdown或者饱和了,所以我们拒绝任务
*/ // 1.当运行的线程少于corePoolSize,
// 则直接执行command任务,addworker(command,true)会产生一个新线程来执行这个任务
int c = ctl.get();
if (workerCountOf(c) < corePoolSize) {
if (addWorker(command, true))
return;
c = ctl.get();
} // 2. 线程池处于RUNNING状态,并将任务放入workQueue队列,但不执行addWorker(表明不创建新的线程)
// 双重校验可防止添加任务到workQueue队列后,线程池状态由于意外等原因处于非RUNNING状态,
// 此时就需要从workQueue队列remove掉这个任务
// 注:offer方法不会阻塞,如果不能插入队列直接返回false。(有可能造成数据丢失?这里不会,也就是说阻塞队列满了)
if (isRunning(c) && workQueue.offer(command)) {
int recheck = ctl.get();
if (! isRunning(recheck) && remove(command))
reject(command);
else if (workerCountOf(recheck) == 0)
addWorker(null, false);
} // 3. 如果线程池不是running状态或者无法入队列,执行线程池的饱和策略
else if (!addWorker(command, false))
reject(command);
}

从上面代码可知,java线程池在任务比较少时(当运行的线程少于corePoolSize),直接通过addWorker来执行任务,当任务比较多时,使用了阻塞队列,阻塞队列里存放的是Worker对象,Worker类是ThreadPoolExecutor的一个内部类,它实现了Runable接口,具有线程的功能。同时还继承了AbstractQueuedSynchronizer(AQS),因此也具有锁的功能。那么ThreadPoolExecutor中如何去执行阻塞队列里面的Worker任务的呢?首先我们来分析一下doWorker,看它是如何执行任务,以及如何触发执行阻塞队列里面的任务的。

3. doWorker代码

doWorker的的作用首先是创建线程,然后执行任务,源码如下:

private boolean addWorker(Runnable firstTask, boolean core) {
retry:
for (;;) {
int c = ctl.get();
// 获取线程池运行状态,
// 线程池的运行状态:runnbale=-1,shutdown=0,stop=1,tidying=2,terminated=3
int rs = runStateOf(c); // Check if queue empty only if necessary.
if (rs >= SHUTDOWN &&
! (rs == SHUTDOWN &&
firstTask == null &&
! workQueue.isEmpty()))
return false; // CAS算法
for (;;) {
int wc = workerCountOf(c);
if (wc >= CAPACITY ||
wc >= (core ? corePoolSize : maximumPoolSize))
return false;
// 如果添加任务成功,则跳出retry,也就是跳出整个循环体
if (compareAndIncrementWorkerCount(c))
break retry;
c = ctl.get(); // Re-read ctl
if (runStateOf(c) != rs)
continue retry;
// else CAS failed due to workerCount change; retry inner loop
}
} boolean workerStarted = false;
boolean workerAdded = false;
Worker w = null;
try {
w = new Worker(firstTask);
// 通过线程池的ThreadFactory创建一个线程,用于执行这个firstTask任务
final Thread t = w.thread;
if (t != null) {
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
// Recheck while holding lock.
// Back out on ThreadFactory failure or if
// shut down before lock acquired.
int rs = runStateOf(ctl.get()); // 说明:(rs == SHUTDOWN && firstTask == null)可能是workQueue中仍有未执行完成的任务,
// 创建没有初始任务的worker线程执行
if (rs < SHUTDOWN ||
(rs == SHUTDOWN && firstTask == null)) {
// 提前检查t线程是否启动,如果是就抛非法线程状态异常
if (t.isAlive())
throw new IllegalThreadStateException();
// workQueue队列中添加Worker对象
workers.add(w);
int s = workers.size();
if (s > largestPoolSize)
largestPoolSize = s;
workerAdded = true;
}
} finally {
mainLock.unlock();
}
// 往HashSet中添加worker成功,启动线程
if (workerAdded) {
t.start();
workerStarted = true;
}
}
} finally {
if (! workerStarted)
addWorkerFailed(w);
}
return workerStarted;
}

代码看起来有点长,但只做了两件事:

1)用循环CAS操作来将线程数加1;

2)新建一个线程并启执行这个任务。

代码中使用的retry,它类似与goto, 用于控制跳出循环体,retry可以随意命名,只要遵循java的命名规则即可。

CAS会使用循环机制,当存在多线程的情况下,通过比较与交换,其它线程通过循环可以的更新最新值。关于CAS可以参考《深入浅出CAS》

在上面源码中可以看到,addWorker会用当前firstTask创建一个Worker对象,相当于对firstTask的包装,然后用Worker对象作为firstTask创建一个Thread,该Thread保存在Worker的thread成员变量中。在addWorker中通过t.start()启动了这个线程,线程中执行runWorker方法。

4. 内部类Worker

那么ThreadPoolExecutor中如何去执行阻塞队列里面的Worker任务的呢?看到这里好像还是没有答案。那接着分析Worker这个内部类:

private final class Worker extends AbstractQueuedSynchronizer implements Runnable{
private static final long serialVersionUID = 6138294804551838833L; /** Thread this worker is running in. Null if factory fails. */
final Thread thread;
/** Initial task to run. Possibly null. */
Runnable firstTask;
/** Per-thread task counter */
volatile long completedTasks; /**
* Creates with given first task and thread from ThreadFactory.
*/
Worker(Runnable firstTask) {
// 设置AQS的同步状态,大于0代表锁已经被获取
setState(-1); // inhibit interrupts until runWorker
this.firstTask = firstTask;
this.thread = getThreadFactory().newThread(this);
} /** Delegates main run loop to outer runWorker */
public void run() {
// 调用ThreadPoolExecutor的runworker方法
runWorker(this);
} // Lock methods
//
// The value 0 represents the unlocked state.
// The value 1 represents the locked state. protected boolean isHeldExclusively() {
return getState() != 0;
} protected boolean tryAcquire(int unused) {
if (compareAndSetState(0, 1)) {
setExclusiveOwnerThread(Thread.currentThread());
return true;
}
return false;
} protected boolean tryRelease(int unused) {
setExclusiveOwnerThread(null);
setState(0);
return true;
} public void lock() { acquire(1); }
public boolean tryLock() { return tryAcquire(1); }
public void unlock() { release(1); }
public boolean isLocked() { return isHeldExclusively(); } void interruptIfStarted() {
Thread t;
if (getState() >= 0 && (t = thread) != null && !t.isInterrupted()) {
try {
t.interrupt();
} catch (SecurityException ignore) {
}
}
}
}

在addWorker中通过t.start()启动了这个线程,线程中执行runWorker方法。

5. runWorker代码

到目前为止还是没有涉及到阻塞队列!可是到runWorker中就可以看到啦!

final void runWorker(Worker w) {
Thread wt = Thread.currentThread();
Runnable task = w.firstTask;
w.firstTask = null;
w.unlock(); // allow interrupts
boolean completedAbruptly = true;
try {
while (task != null || (task = getTask()) != null) {
w.lock();
// If pool is stopping, ensure thread is interrupted;
// if not, ensure thread is not interrupted. This
// requires a recheck in second case to deal with
// shutdownNow race while clearing interrupt
if ((runStateAtLeast(ctl.get(), STOP) ||
(Thread.interrupted() &&
runStateAtLeast(ctl.get(), STOP))) &&
!wt.isInterrupted())
wt.interrupt();
try {
beforeExecute(wt, task);
Throwable thrown = null;
try {
task.run();
} catch (RuntimeException x) {
thrown = x; throw x;
} catch (Error x) {
thrown = x; throw x;
} catch (Throwable x) {
thrown = x; throw new Error(x);
} finally {
afterExecute(task, thrown);
}
} finally {
task = null;
w.completedTasks++;
w.unlock();
}
}
completedAbruptly = false;
} finally {
processWorkerExit(w, completedAbruptly);
}
}

上面代码关键点是while循环getTask()方法,通过循环不断的调用getTask()从阻塞队列中获取任务,通过这个方法,它与阻塞队列建立桥梁。目前我们已经知道当添加任务数量大于coolPoolSize(且小于maximumPoolSize)的时候,并不会创建线程,但是由于在任务数量小于coolPoolSize之前调用了addWorker并触发t.star()执行,从而调用了runWorker,通过循环不断的调用getTask()从阻塞队列中获取任务,如果getTask()返回不为null,则上锁,执行任务,任务执行完成之后解锁。如果getTask()返回null,改变completedAbrutly状态,然后调用processWorkerExit() 退出worker线程。

6. getTask代码

由第5点引出了getTask方法。

 private Runnable getTask() {
boolean timedOut = false; // Did the last poll() time out? for (;;) {
int c = ctl.get();
int rs = runStateOf(c); // Check if queue empty only if necessary.
if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
decrementWorkerCount();
return null;
} int wc = workerCountOf(c); // Are workers subject to culling?
boolean timed = allowCoreThreadTimeOut || wc > corePoolSize; if ((wc > maximumPoolSize || (timed && timedOut))
&& (wc > 1 || workQueue.isEmpty())) {
if (compareAndDecrementWorkerCount(c))
return null;
continue;
} try {
Runnable r = timed ?
workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
workQueue.take();
if (r != null)
return r;
timedOut = true;
} catch (InterruptedException retry) {
timedOut = false;
}
}
}

getTask中主要看获取任务的代码如下:

  1. workQueue.poll():如果在keepAliveTime时间内,阻塞队列中没有任务,返回null;
  2. workQueue.take():如果阻塞队列为空,当前线程会被阻塞;当队列中有任务加入时,线程被唤醒,并返回任务。

6. 小结

本文只是对线程池正常的工作流程进行了分析,并没有对线程池shutdown或者stop的情况进行分析,这些部分涉及到AQS等并发技术,这部分比较复杂,感兴趣可以更加深入研究一下。

参考:

  1. https://www.cnblogs.com/trust-freedom/p/6681948.html#top
  2. https://www.jianshu.com/p/fb6e91b013cc

ThreadPoolExecutor的execute源码分析的更多相关文章

  1. 线程池之ThreadPoolExecutor线程池源码分析笔记

    1.线程池的作用 一方面当执行大量异步任务时候线程池能够提供较好的性能,在不使用线程池的时候,每当需要执行异步任务时候是直接 new 一线程进行运行,而线程的创建和销毁是需要开销的.使用线程池时候,线 ...

  2. 【JUC】JDK1.8源码分析之ThreadPoolExecutor(一)

    一.前言 JUC这部分还有线程池这一块没有分析,需要抓紧时间分析,下面开始ThreadPoolExecutor,其是线程池的基础,分析完了这个类会简化之后的分析,线程池可以解决两个不同问题:由于减少了 ...

  3. Java ThreadPoolExecutor线程池原理及源码分析

    一.源码分析(基于JDK1.6) ThreadExecutorPool是使用最多的线程池组件,了解它的原始资料最好是从从设计者(Doug Lea)的口中知道它的来龙去脉.在Jdk1.6中,Thread ...

  4. java多线程系列:ThreadPoolExecutor源码分析

    前言 这篇主要讲述ThreadPoolExecutor的源码分析,贯穿类的创建.任务的添加到线程池的关闭整个流程,让你知其然所以然.希望你可以通过本篇博文知道ThreadPoolExecutor是怎么 ...

  5. ThreadPoolExecutor源码分析(一)

    一.前言 闲来无事,博主有重新翻看了一下jdk1.8版的ThreadPoolExecutor源码,看后写此笔记,画个圈圈,做个记录,这段源码,我看过,到处一游,嘻嘻~~ 二.ThreadPoolExe ...

  6. 源码分析—ThreadPoolExecutor线程池三大问题及改进方案

    前言 在一次聚会中,我和一个腾讯大佬聊起了池化技术,提及到java的线程池实现问题,我说这个我懂啊,然后巴拉巴拉说了一大堆,然后腾讯大佬问我说,那你知道线程池有什么缺陷吗?我顿时哑口无言,甘拜下风,所 ...

  7. ThreadPoolExecutor源码分析一

           在线程池出现之前,每次需要使用线程,都得创建一个线程.但是,在java的运行环境中,创建一个线程是非常耗费资源和时间的.是否可以把线程重复利用,减少线程的创建次数.基于此,java1.5 ...

  8. JUC源码分析-线程池篇(一):ThreadPoolExecutor

    JUC源码分析-线程池篇(一):ThreadPoolExecutor Java 中的线程池是运用场景最多的并发框架,几乎所有需要异步或并发执行任务的程序都可以使用线程池.在开发过程中,合理地使用线程池 ...

  9. ThreadPoolExecutor源码分析-面试问烂了的Java线程池执行流程,如果要问你具体的执行细节,你还会吗?

    Java版本:8u261. 对于Java中的线程池,面试问的最多的就是线程池中各个参数的含义,又或者是线程池执行的流程,彷佛这已成为了固定的模式与套路.但是假如我是面试官,现在我想问一些更细致的问题, ...

随机推荐

  1. bzoj3503 和谐矩阵

    Description 我们称一个由0和1组成的矩阵是和谐的,当且仅当每个元素都有偶数个相邻的1.一个元素相邻的元素包括它本身,及他上下左右的4个元素(如果存在).给定矩阵的行数和列数,请计算并输出一 ...

  2. Spring IOC - 控制反转(依赖注入) - 配置初始化和销毁的方法

    在Spring中如果某个bean在初始化之后,或销毁之前要做一些额外操作可以为该bean配置初始化和销毁的我方法,在这些方法中完成需要的功能. 实验: 通过断点调试模式,测试初始化方法和销毁方法的执行 ...

  3. call和apply,bind的区别专讲

    可以干什么? 改变函数内的this指向: 什么时候使用? 构造函数使用this 为什么使用? 为了生成对象 类(函数名不可以带括号).call()      因为this指向对象,所以call的第一个 ...

  4. PHP下载文件的几种方案

    PHP下载远程文件的3种方法以及性能考虑 2014-02-21      0个评论       收藏    我要投稿 今天在做导出Excel的时候,总是要测试导出的Excel文件,频繁的下载和打开,很 ...

  5. 对于分类问题的神经网络最后一层的函数:sigmoid、softmax与损失函数

    对于分类问题的神经网络最后一层的函数做如下知识点总结: sigmoid和softmax一般用作神经网络的最后一层做分类函数(备注:sigmoid也用作中间层做激活函数): 对于类别数量大于2的分类问题 ...

  6. 【Python编程:从入门到实践】chapter8 函数

    chapter8 函数 8.6 将函数存储在模块中 8.6.1 导入整个模块 要让函数是可导入的,的先创建模块.模块 的扩展名为.py的文件 import pizza 8.6.2 到导入特定的函数 f ...

  7. sqoop操作之Oracle导入到HDFS

    导入表的所有字段 sqoop import --connect jdbc:oracle:thin:@192.168.1.100:1521:ORCL \ --username SCOTT --passw ...

  8. 中国Linux开源镜像站大全

    本文来源:各大开源软件.发行版镜像页面.       请注意这是一个总结,如果您自己搭建了一个小型开源镜像,这里并没有.以下列出的是包含大量不同镜像的站点.       具体配置中,我建议您使用大企业 ...

  9. solr联合多个字段进行检索(multivalued和copyfield的使用)

    在实际工作中不仅仅对索引中的单个字段进行搜索.需要进行综合查询. 比如book表中有id,name(标题),price,summary(摘要),content(内容),我们要找一本书的时候,查询关键字 ...

  10. CSS宽度高度的百分比取值基于谁

    width=num% , height=num% 基于以下几点 1. 若元素不存在定位: 则基于直接父元素的宽高度 2. 若元素存在定位 且 定位为 relative, 则也基于直接父元素的宽高度 3 ...