1. fielddata核心原理

  fielddata加载到内存的过程是lazy加载的,对一个analzyed field执行聚合时,才会加载,而且是field-level加载的,一个index的一个field,所有doc都会被加载,而不是少数doc,不是index-time创建,是query-time创建

2. fielddata内存限制

  indices.fielddata.cache.size: 20%,超出限制,清除内存已有fielddata数据,fielddata占用的内存超出了这个比例的限制,那么就清除掉内存中已有的fielddata数据,默认无限制,限制内存使用,但是会导致频繁evict和reload,大量IO性能损耗,以及内存碎片和gc

3. 监控fielddata内存使用

GET /_stats/fielddata?fields=*
GET /_nodes/stats/indices/fielddata?fields=*
GET /_nodes/stats/indices/fielddata?level=indices&fields=*

4. circuit breaker

如果一次query load的feilddata超过总内存,就会oom --> 内存溢出

circuit breaker会估算query要加载的fielddata大小,如果超出总内存,就短路,query直接失败

indices.breaker.fielddata.limit:fielddata的内存限制,默认60%
indices.breaker.request.limit:执行聚合的内存限制,默认40%
indices.breaker.total.limit:综合上面两个,限制在70%以内

5. fielddata预加载

如果真的要对分词的field执行聚合,那么每次都在query-time现场生产fielddata并加载到内存中来,速度可能会比较慢

POST /test_index/_mapping/test_type
{
"properties": {
"test_field": {
"type": "string",
"fielddata": {
"loading" : "eager"
}
}
}
}

  query-time的fielddata生成和加载到内存,变为index-time,建立倒排索引的时候,会同步生成fielddata并且加载到内存中来,这样的话,对分词field的聚合性能当然会大幅度增强

6. fielddata 序号标记预加载

global ordinal原理解释

doc1: status1
doc2: status2
doc3: status2
doc4: status1

有很多重复值的情况,会进行global ordinal标记

status1 --> 0
status2 --> 1

doc1: 0
doc2: 1
doc3: 1
doc4: 0

建立的fielddata也会是这个样子的,这样的好处就是减少重复字符串的出现的次数,减少内存的消耗

POST /test_index/_mapping/test_type
{
"properties": {
"test_field": {
"type": "string",
"fielddata": {
"loading" : "eager_global_ordinals"
}
}
}
}

Elasticsearch学习之深入聚合分析五---案例实战的更多相关文章

  1. Elasticsearch学习之深入聚合分析四---案例实战

    1. 需求:比如有一个网站,记录下了每次请求的访问的耗时,需要统计tp50,tp90,tp99 tp50:50%的请求的耗时最长在多长时间tp90:90%的请求的耗时最长在多长时间tp99:99%的请 ...

  2. Elasticsearch学习之深入聚合分析三---案例实战

    1. 统计指定品牌下每个颜色的销量 任何的聚合,都必须在搜索出来的结果数据中进行,搜索结果,就是聚合分析操作的scope GET /tvs/sales/_search { , "query& ...

  3. Elasticsearch学习之深入聚合分析二---案例实战

    以一个家电卖场中的电视销售数据为背景,来对各种品牌,各种颜色的电视的销量和销售额,进行各种各样角度的分析,首先建立电视销售的索引,然后 添加几条销售记录 PUT /tvs { "mappin ...

  4. Elasticsearch学习之深入聚合分析一---基本概念

    首先明白两个核心概念:bucket和metric 1. bucket:一个数据分组 city name 北京 小李 北京 小王 上海 小张 上海 小丽 上海 小陈 基于city划分buckets,划分 ...

  5. ElasticStack学习(八):ElasticSearch索引模板与聚合分析初探

    一.Index Template与Dynamic Template的概念 1.Index Template:它是用来根据提前设定的Mappings和Settings,并按照一定的规则,自动匹配到新创建 ...

  6. elasticsearch系列六:聚合分析(聚合分析简介、指标聚合、桶聚合)

    一.聚合分析简介 1. ES聚合分析是什么? 聚合分析是数据库中重要的功能特性,完成对一个查询的数据集中数据的聚合计算,如:找出某字段(或计算表达式的结果)的最大值.最小值,计算和.平均值等.ES作为 ...

  7. ElasticSearch 简单的 搜索 聚合 分析

    一. 搜索1.DSL搜索 全部数据没有任何条件 GET /shop/goods/_search { "query": { "match_all": {} } } ...

  8. Elasticsearch学习之嵌套聚合,下钻分析,聚合分析

    1. 计算每个tag下的商品数量 GET /ecommerce/product/_search { "aggs": { "group_by_tags": { & ...

  9. Elasticsearch 6.x版本全文检索学习之聚合分析入门

    1.什么是聚合分析? 答:聚合分析,英文为Aggregation,是es除搜索功能外提供的针对es数据做统计分析的功能.特点如下所示: a.功能丰富,提供Bucket.Metric.Pipeline等 ...

随机推荐

  1. Yii2 session的使用方法(2)

    yii2打开session use yii\web\Session; $session = Yii::$app->session; // check if a session is alread ...

  2. 基于struts2的ajaxfileupload异步上传插件的使用

    服务器端采用struts2来处理文件上传. 所需环境: jquery.js ajaxfileupload.js struts2所依赖的jar包 及struts2-json-plugin-2.1.8.1 ...

  3. hive以文件创建表

    create table location( location string, ip string, name string, city string, classfication string, c ...

  4. 4 云计算系列之Openstack简介与keystone安装

    preface KVM 是openstack虚拟化的基础, 再介绍了kvm虚拟化技术之后,我们介绍下openstack和如何搭建. Openstack组件 openstack架构图如下所示 那么我们就 ...

  5. RMAN:简单的duplicate创建新数据库 for 12c+

    构建参数文件 *.db_name='test2' ##### 需要注意的地方,和rman的duplicate目标库一致 *.compatible='18.0.0' ##### 关键的地方,每个版本的模 ...

  6. Unable to resolve target 'android-9'

    右键项目文件--->properties--->android  选择对应版本 保存 如还不生效 打开项目文件project.properties ,修改 target=android-1 ...

  7. [原]pomelo开发环境搭建

    pomelo基于nodejs服务器开源框架,比较牛逼的! 1.安装nodejs(官网下载地址) 安装python等 具体见官网说明 2.安装pomelo(见官方步骤)或者 http://blog.cs ...

  8. Android和IOS开发学习路线

    图片看上去太小,直接另存为吧 图片来自:http://www.finalshares.com/

  9. 01-虚拟软件vmware安装

    什么是虚拟软件: 虚拟原件是一个可以使你在一台机器上同时运行二个或更多Windows.LINUX等系统.它可以模拟一个标准PC环境.这个环境和真实的计算机一样,都有芯片组.CPU.内存.显卡.声卡.网 ...

  10. linux 查看硬件信息

      1.查看内存槽数.那个槽位插了内存,大小是多少 dmidecode|grep -P -A5 "Memory\s+Device"|grep Size|grep -v Range ...