数据仓库专题(23):总线矩阵的另类应用-Drill Down into a More Detailed Bus Matrix
一、前言
Many of you are already familiar with the data warehouse bus architecture and matrix given their central role in building architected data marts. The corresponding bus matrix identifies the key business processes of an organization, along with their associated dimensions. Business processes (typically corresponding to major source systems) are listed as matrix rows, while dimensions appear as matrix columns. The cells of the matrix are then marked to indicate which dimensions apply to which processes.
In a single document, the data warehouse team has a tool for planning the overall data warehouse, identifying the shared dimensions across the enterprise, coordinating the efforts of separate implementation teams, and communicating the importance of shared dimensions throughout the organization. We firmly believe drafting a bus matrix is one of the key initial tasks to be completed by every data warehouse team after soliciting the business’ requirements.
二、面临问题
While the matrix provides a high-level overview of the data warehouse presentation layer “puzzle pieces” and their ultimate linkages, it is often helpful to provide more detail as each matrix row is implemented. Multiple fact tables often result from a single business process. Perhaps there’s a need to view business results in a combination of transaction, periodic snapshot or accumulating snapshot perspectives. Alternatively, multiple fact tables are often required to represent atomic versus more summarized information or to support richer analysis in a heterogeneous product environment.
三、解决方案
We can alter the matrix’s “grain” or level of detail so that each row represents a single fact table (or cube) related to a business process. Once we’ve specified the individual fact table, we can supplement the matrix with columns to indicate the fact table’s granularity and corresponding facts (actual, calculated or implied). Rather than merely marking the dimensions that apply to each fact table, we can indicate the dimensions’ level of detail (such as brand or category, as appropriate, within the product dimension column).
四、总结
The resulting embellished matrix provides a roadmap to the families of fact tables in your data warehouse. While many of us are naturally predisposed to dense details, we suggest you begin with the more simplistic, high-level matrix and then drill-down into the details as each business process is implemented. Finally, for those of you with an existing data warehouse, the detailed matrix is often a useful tool to document the “as is” status of a more mature warehouse environment.
数据仓库专题(23):总线矩阵的另类应用-Drill Down into a More Detailed Bus Matrix的更多相关文章
- FocusBI: 总线矩阵(原创)
关注微信公众号:FocusBI 查看更多文章:加QQ群:808774277 获取学习资料和一起探讨问题. <商业智能教程>pdf下载地址 链接:https://pan.baidu.com/ ...
- 数据仓库专题(2)-Kimball维度建模四步骤
一.前言 四步过程维度建模由Kimball提出,可以做为业务梳理.数据梳理后进行多维数据模型设计的指导流程,但是不能作为数据仓库系统建设的指导流程.本文就相关流程及核心问题进行解读. 二.数据仓库建设 ...
- 「kuangbin带你飞」专题十九 矩阵
layout: post title: 「kuangbin带你飞」专题十九 矩阵 author: "luowentaoaa" catalog: true tags: mathjax ...
- 编程计算2×3阶矩阵A和3×2阶矩阵B之积C。 矩阵相乘的基本方法是: 矩阵A的第i行的所有元素同矩阵B第j列的元素对应相乘, 并把相乘的结果相加,最终得到的值就是矩阵C的第i行第j列的值。 要求: (1)从键盘分别输入矩阵A和B, 输出乘积矩阵C (2) **输入提示信息为: 输入矩阵A之前提示:"Input 2*3 matrix a:\n" 输入矩阵B之前提示
编程计算2×3阶矩阵A和3×2阶矩阵B之积C. 矩阵相乘的基本方法是: 矩阵A的第i行的所有元素同矩阵B第j列的元素对应相乘, 并把相乘的结果相加,最终得到的值就是矩阵C的第i行第j列的值. 要求: ...
- 数据仓库专题(21):Kimball总线矩阵说明-官方版
一.前言 Over the years, I have found that a matrix depiction of the data warehouse plan is a pretty goo ...
- 数据仓库专题20-案例篇:电商领域数据主题域模型设计v0.2(改进意见征集中)
一.电商分类(平台+自营+复合) (1)平台型电商:淘宝+天猫+百度Mall等: (2)自营型电商: 2.1 综合型:京东(早期)+当当(早期): 2.2 垂直型:好像这种类型越来越少了: (3)复合 ...
- 数据仓库专题(5)-如何构建主题域模型原则之站在巨人的肩上(二)NCR FS-LDM主题域模型划分
一.前言 分布式数据仓库模型的架构设计,受分布式技术的影响,很多有自己特色的地方,但是在概念模型和逻辑模型设计方面,还是有很多可以从传统数据仓库模型进行借鉴的地方.NCR FS-LDM数据模型是金融行 ...
- 【Linux高频命令专题(23)】tar
概述 通过SSH访问服务器,难免会要用到压缩,解压缩,打包,解包等,这时候tar命令就是是必不可少的一个功能强大的工具.linux中最流行的tar是麻雀虽小,五脏俱全,功能强大. tar命令可以为li ...
- 数据仓库专题19-数据建模语言Information Engineering - IE模型(转载)
Information Engineering采用Crow's Foot表示法(也有叫做James Martin表示法的),中文翻译中对使用了Crow's Foot表示法的模型也有笼统的称做鸭掌模型的 ...
随机推荐
- Linux内核分析之操作系统是如何工作的
在本周的课程中,孟老师主要讲解了操作系统是如何工作的,我根据自己的理解写了这篇博客,请各位小伙伴多多指正. 一.知识点总结 1. 三个法宝 存储程序计算机:所有计算机基础性的逻辑框架. 堆栈:高级语言 ...
- .android:allowTaskReparenting 等Activity 的task属性
转自http://blog.csdn.net/javayinjaibo/article/details/8855678 1.android:allowTaskReparenting 这个属性用来标记一 ...
- 入门级:怎么使用C#进行套接字编程(二)
入门级:怎么使用C#进行套接字编程(一) 原文地址如下: C# Server Socket program C# Client Socket program 代码环境:VS2010+Win8.1企业评 ...
- Swift 笔记
苹果官方文档 https://developer.apple.com CocoaChina帮助文档 http://www.cocoachina.com/special/swift/ 74个Swift标 ...
- Java并行程序设计模式小结
这里总结几种常用的并行程序设计方法,其中部分文字源自<Java程序性能优化>一书中,还有部分文字属于个人总结,如有不对,请大家指出讨论. Future模式 一句话,将客户端请求的处理过程从 ...
- AngularJS快速入门指南01:导言
AngularJS使用新的attributes扩展了HTML AngularJS对单页面应用的支持非常好(SPAs) AngularJS非常容易学习 现在就开始学习AngularJS吧! 关于本指南 ...
- C语言实现二叉树-03版
我们亲爱的项目经理真是有创意,他说你给我写得二叉树挺好的: 功能还算可以:插入节点,能够删除节点: 可是有时候我们只是需要查找树的某个节点是否存在: 所以我希望你能够给我一个find功能: 还有就是, ...
- paip.检测信用卡账单数据的正确性算法
paip.检测信用卡账单数据的正确性算法 主要3点: //1.重点检测.大钱记录 //2.检测遗漏记录 //3.排除双唇记录. //4.试着cls share,改变错误的cls. 作者Attilax ...
- 每天一个linux命令(7):mv命令
mv命令是move的缩写,可以用来移动文件或者将文件改名(move (rename) files),是Linux系统下常用的命令,经常用来备份文件或者目录. 企业中常用的 [root@ local]# ...
- 分析Linux内核中进程的调度(时间片轮转)-《Linux内核分析》Week2作业
1.环境的搭建: 这个可以参考孟宁老师的github:mykernel,这里不再进行赘述.主要是就是下载Linux3.9的代码,然后安装孟宁老师编写的patch,最后进行编译. 2.代码的解读 课上的 ...