一、前言

Many of you are already familiar with the data warehouse bus architecture and matrix given their central role in building architected data marts. The corresponding bus matrix identifies the key business processes of an organization, along with their associated dimensions. Business processes (typically corresponding to major source systems) are listed as matrix rows, while dimensions appear as matrix columns. The cells of the matrix are then marked to indicate which dimensions apply to which processes.

In a single document, the data warehouse team has a tool for planning the overall data warehouse, identifying the shared dimensions across the enterprise, coordinating the efforts of separate implementation teams, and communicating the importance of shared dimensions throughout the organization. We firmly believe drafting a bus matrix is one of the key initial tasks to be completed by every data warehouse team after soliciting the business’ requirements.

二、面临问题

While the matrix provides a high-level overview of the data warehouse presentation layer “puzzle pieces” and their ultimate linkages, it is often helpful to provide more detail as each matrix row is implemented. Multiple fact tables often result from a single business process. Perhaps there’s a need to view business results in a combination of transaction, periodic snapshot or accumulating snapshot perspectives. Alternatively, multiple fact tables are often required to represent atomic versus more summarized information or to support richer analysis in a heterogeneous product environment.

三、解决方案

We can alter the matrix’s “grain” or level of detail so that each row represents a single fact table (or cube) related to a business process. Once we’ve specified the individual fact table, we can supplement the matrix with columns to indicate the fact table’s granularity and corresponding facts (actual, calculated or implied). Rather than merely marking the dimensions that apply to each fact table, we can indicate the dimensions’ level of detail (such as brand or category, as appropriate, within the product dimension column).

 四、总结

The resulting embellished matrix provides a roadmap to the families of fact tables in your data warehouse. While many of us are naturally predisposed to dense details, we suggest you begin with the more simplistic, high-level matrix and then drill-down into the details as each business process is implemented. Finally, for those of you with an existing data warehouse, the detailed matrix is often a useful tool to document the “as is” status of a more mature warehouse environment.

数据仓库专题(23):总线矩阵的另类应用-Drill Down into a More Detailed Bus Matrix的更多相关文章

  1. FocusBI: 总线矩阵(原创)

    关注微信公众号:FocusBI 查看更多文章:加QQ群:808774277 获取学习资料和一起探讨问题. <商业智能教程>pdf下载地址 链接:https://pan.baidu.com/ ...

  2. 数据仓库专题(2)-Kimball维度建模四步骤

    一.前言 四步过程维度建模由Kimball提出,可以做为业务梳理.数据梳理后进行多维数据模型设计的指导流程,但是不能作为数据仓库系统建设的指导流程.本文就相关流程及核心问题进行解读. 二.数据仓库建设 ...

  3. 「kuangbin带你飞」专题十九 矩阵

    layout: post title: 「kuangbin带你飞」专题十九 矩阵 author: "luowentaoaa" catalog: true tags: mathjax ...

  4. 编程计算2×3阶矩阵A和3×2阶矩阵B之积C。 矩阵相乘的基本方法是: 矩阵A的第i行的所有元素同矩阵B第j列的元素对应相乘, 并把相乘的结果相加,最终得到的值就是矩阵C的第i行第j列的值。 要求: (1)从键盘分别输入矩阵A和B, 输出乘积矩阵C (2) **输入提示信息为: 输入矩阵A之前提示:"Input 2*3 matrix a:\n" 输入矩阵B之前提示

    编程计算2×3阶矩阵A和3×2阶矩阵B之积C. 矩阵相乘的基本方法是: 矩阵A的第i行的所有元素同矩阵B第j列的元素对应相乘, 并把相乘的结果相加,最终得到的值就是矩阵C的第i行第j列的值. 要求: ...

  5. 数据仓库专题(21):Kimball总线矩阵说明-官方版

    一.前言 Over the years, I have found that a matrix depiction of the data warehouse plan is a pretty goo ...

  6. 数据仓库专题20-案例篇:电商领域数据主题域模型设计v0.2(改进意见征集中)

    一.电商分类(平台+自营+复合) (1)平台型电商:淘宝+天猫+百度Mall等: (2)自营型电商: 2.1 综合型:京东(早期)+当当(早期): 2.2 垂直型:好像这种类型越来越少了: (3)复合 ...

  7. 数据仓库专题(5)-如何构建主题域模型原则之站在巨人的肩上(二)NCR FS-LDM主题域模型划分

    一.前言 分布式数据仓库模型的架构设计,受分布式技术的影响,很多有自己特色的地方,但是在概念模型和逻辑模型设计方面,还是有很多可以从传统数据仓库模型进行借鉴的地方.NCR FS-LDM数据模型是金融行 ...

  8. 【Linux高频命令专题(23)】tar

    概述 通过SSH访问服务器,难免会要用到压缩,解压缩,打包,解包等,这时候tar命令就是是必不可少的一个功能强大的工具.linux中最流行的tar是麻雀虽小,五脏俱全,功能强大. tar命令可以为li ...

  9. 数据仓库专题19-数据建模语言Information Engineering - IE模型(转载)

    Information Engineering采用Crow's Foot表示法(也有叫做James Martin表示法的),中文翻译中对使用了Crow's Foot表示法的模型也有笼统的称做鸭掌模型的 ...

随机推荐

  1. NSMutableAttributedString/NSAttributedString 富文本设置

    今天在做项目的过程中,我们的设计师想要一种字体四周都带阴影的效果,但是我们平时使用的setShadowColor 和setShadowOffset是达不到这种效果,setShadowOffset 只能 ...

  2. SQLSERVER 2012之AlwaysOn -- 一次硬件升级引发的问题

    这是上周遇到的一个案例:对已有的硬件进行升级而引发的问题,期间还触发了一个比较严重的BUG,可谓多灾多难:不过值得庆幸的是,在一连串连锁问题出现的时候,并没有出现人工操作失误(这往往是在处理故障中风险 ...

  3. CodeIgniter nginx 404

    默认情况下CI 不支持路由模式需要在server里面配置,配置成如下即可: server { listen 80 ; server_name wechat.XX.com.cn; root XX; in ...

  4. solr与.net系列课程(七)solr主从复制

    solr与.net系列课程(七)solr主从复制    既然solr是解决大量数据全文索引的方案,由于高并发的问题,我们就要考虑solr的负载均衡了,solr提供非常简单的主从复制的配置方法,那么下面 ...

  5. Server Develop (九) Simple Web Server

    Simple Web Server web服务器hello world!-----简单的socket通信实现. HTTP HTTP是Web浏览器与Web服务器之间通信的标准协议,HTTP指明了客户端如 ...

  6. Backbone Collection——数据模型集合

    如果将一个Model对象比喻成数据库中的一条记录,那么Collection就是一张数据表.它表示为一个模型集合类,用于存储和管理一系列相同类型的模型对象. 1.创建集合集合用于组织和管理多个模型,但它 ...

  7. 【转】关于Mahalanobis距离的笔记

    Mahalanobis距离是用来度量一个点P和一个分布D之间的距离,它是衡量点P与分布D的均值之间存在多少个标准差的一个多维泛化版本. 如果P就位于分布D的均值处,则该距离为0:该距离随着P的偏离均值 ...

  8. atitit. hb 原生sql跨数据库解决原理 获得hb 数据库类型运行期获得Dialect

    atitit. hb 原生sql跨数据库解决原理 获得hb 数据库类型运行期获得Dialect   #-----原理 Hibernate 运行期获得Dialect   2010-07-28 12:59 ...

  9. paip.代码生成器数据源格式最佳实践

    paip.代码生成器数据源格式最佳实践 需要满足几个条件. 1.基于文本 2.容易的编辑.. 3,容易的代码解析. 这样,常用的设计工具powerdesign cdm pdm就排除兰...cdm虽然是 ...

  10. Django配置与静态文件

    settings.py """ Django settings for myproject project. Generated by 'django-admin sta ...