最小点覆盖集就是在一个有向图中选出最少的点集,使其覆盖所有的边。

二分图最小点覆盖集=二分图最大匹配(二分图最大边独立集)

  • 这题A机器的n种模式作为X部的点,B机器的m种模式作为Y部的点;
  • 每个任务就作为边,端点是可以完成它的A和B的某个模式。

这样,问题就变成在这个二分图中取出最少的点覆盖所有的边。

此外,因为开始机器都是在初始在0模式下的,所以所有可以在0模式完成的任务一开始就让它们完成这样就不需要切换模式。

 #include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
using namespace std;
#define INF (1<<30)
#define MAXN 2555
#define MAXM 555555 struct Edge{
int v,cap,flow,next;
}edge[MAXM];
int vs,vt,NE,NV;
int head[MAXN]; void addEdge(int u,int v,int cap){
edge[NE].v=v; edge[NE].cap=cap; edge[NE].flow=;
edge[NE].next=head[u]; head[u]=NE++;
edge[NE].v=u; edge[NE].cap=; edge[NE].flow=;
edge[NE].next=head[v]; head[v]=NE++;
} int level[MAXN];
int gap[MAXN];
void bfs(){
memset(level,-,sizeof(level));
memset(gap,,sizeof(gap));
level[vt]=;
gap[level[vt]]++;
queue<int> que;
que.push(vt);
while(!que.empty()){
int u=que.front(); que.pop();
for(int i=head[u]; i!=-; i=edge[i].next){
int v=edge[i].v;
if(level[v]!=-) continue;
level[v]=level[u]+;
gap[level[v]]++;
que.push(v);
}
}
} int pre[MAXN];
int cur[MAXN];
int ISAP(){
bfs();
memset(pre,-,sizeof(pre));
memcpy(cur,head,sizeof(head));
int u=pre[vs]=vs,flow=,aug=INF;
gap[]=NV;
while(level[vs]<NV){
bool flag=false;
for(int &i=cur[u]; i!=-; i=edge[i].next){
int v=edge[i].v;
if(edge[i].cap!=edge[i].flow && level[u]==level[v]+){
flag=true;
pre[v]=u;
u=v;
//aug=(aug==-1?edge[i].cap:min(aug,edge[i].cap));
aug=min(aug,edge[i].cap-edge[i].flow);
if(v==vt){
flow+=aug;
for(u=pre[v]; v!=vs; v=u,u=pre[u]){
edge[cur[u]].flow+=aug;
edge[cur[u]^].flow-=aug;
}
//aug=-1;
aug=INF;
}
break;
}
}
if(flag) continue;
int minlevel=NV;
for(int i=head[u]; i!=-; i=edge[i].next){
int v=edge[i].v;
if(edge[i].cap!=edge[i].flow && level[v]<minlevel){
minlevel=level[v];
cur[u]=i;
}
}
if(--gap[level[u]]==) break;
level[u]=minlevel+;
gap[level[u]]++;
u=pre[u];
}
return flow;
} int main(){
int n,m,k,a,b;
while(~scanf("%d",&n) && n){
scanf("%d%d",&m,&k);
memset(head,-,sizeof(head));
vs=n+m; vt=vs+; NV=vt+; NE=;
for(int i=; i<n; ++i){
addEdge(vs,i,);
}
for(int i=; i<m; ++i){
addEdge(i+n,vt,);
}
while(k--){
scanf("%*d%d%d",&a,&b);
if(a== || b==) continue;
addEdge(a,b+n,);
}
printf("%d\n",ISAP());
}
return ;
}

POJ1325 Machine Schedule(二分图最小点覆盖集)的更多相关文章

  1. [poj1325] Machine Schedule (二分图最小点覆盖)

    传送门 Description As we all know, machine scheduling is a very classical problem in computer science a ...

  2. UVA1194 Machine Schedule[二分图最小点覆盖]

    题意翻译 有两台机器 A,B 分别有 n,m 种模式. 现在有 k 个任务.对于每个任务 i ,给定两个整数$ a_i\(和\) b_i$,表示如果该任务在 A上执行,需要设置模式为 \(a_i\): ...

  3. HDU 1150 Machine Schedule (二分图最小点覆盖)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1150 有两个机器a和b,分别有n个模式和m个模式.下面有k个任务,每个任务需要a的一个模式或者b的一个 ...

  4. POJ - 1325 Machine Schedule 二分图 最小点覆盖

    题目大意:有两个机器,A机器有n种工作模式,B机器有m种工作模式,刚開始两个机器都是0模式.假设要切换模式的话,机器就必须的重新启动 有k个任务,每一个任务都能够交给A机器的i模式或者B机器的j模式完 ...

  5. POJ2226 Muddy Fields(二分图最小点覆盖集)

    题目给张R×C的地图,地图上*表示泥地..表示草地,问最少要几块宽1长任意木板才能盖住所有泥地,木板可以重合但不能盖住草地. 把所有行和列连续的泥地(可以放一块木板铺满的)看作点且行和列连续泥地分别作 ...

  6. POJ 3041 Asteroids (二分图最小点覆盖集)

    Asteroids Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 24789   Accepted: 13439 Descr ...

  7. POJ 1325 Machine Schedule(最小点覆盖)

    http://poj.org/problem?id=1325 题意: 两种机器A和B.机器A具有n种工作模式,称为mode_0,mode_1,...,mode_n-1,同样机器B有m种工作模式mode ...

  8. poj1325机器工作——二分图最小点覆盖

    题目:http://poj.org/problem?id=1325 二分图求最大匹配,即为最小点覆盖: 一开始我写得较麻烦,求出最大匹配又去搜增广路,打标记求最小点覆盖: 然而两种方法都没写“ans= ...

  9. POJ-1325 Machine Schedule 二分图匹配 最小点覆盖问题

    POJ-1325 题意: 有两台机器A,B,分别有n,m种模式,初始都在0模式,现在有k项任务,每项任务要求A或者B调到对应的模式才能完成.问最少要给机器A,B调多少次模式可以完成任务. 思路: 相当 ...

随机推荐

  1. [BZOJ4636]蒟蒻的数列

    [BZOJ4636]蒟蒻的数列 试题描述 蒟蒻DCrusher不仅喜欢玩扑克,还喜欢研究数列 题目描述 DCrusher有一个数列,初始值均为0,他进行N次操作,每次将数列[a,b)这个区间中所有比k ...

  2. [BZOJ1064][Noi2008]假面舞会

    [BZOJ1064][Noi2008]假面舞会 试题描述 一年一度的假面舞会又开始了,栋栋也兴致勃勃的参加了今年的舞会.今年的面具都是主办方特别定制的.每个参加舞会的人都可以在入场时选择一 个自己喜欢 ...

  3. MyBatis调用存储过程

    MySQL存储过程 DROP PROCEDURE IF EXISTS transferMoney; -- 实现转账功能的存储过程 CREATE PROCEDURE transferMoney ( IN ...

  4. Python配合BeautifulSoup读取网络图片并保存在本地

    本例为Python配合BeautifulSoup读取网络图片,并保存在本地. BeautifulSoup可代替正则表达式,更好地解析Html文本,获取其中的指定内容,如Tag.Property等 # ...

  5. php中global与$GLOBALS的用法及区别-转载

    php中global 与 $GLOBALS[""] 差别 原本觉得global和$GLOBALS除了写法不一样觉得,其他都一样,可是在实际利用中发现2者的差别还是很大的! 先看下面 ...

  6. 【Spring】Spring系列1之Spring概述

    概述

  7. 【SpringMVC】SpringMVC系列7之POJO 对象绑定请求参数值

      7.POJO 对象绑定请求参数值 7.1.概述 Spring MVC 会按请求参数名和 POJO 属性名进行自动匹配,自动为该对象填充属性值.而且支持级联属性.如:dept.deptId.dept ...

  8. 查看别人的css

    ie工具栏的“文件”选项选“另存为”到你本地电脑,存下来有两个文件 一个是空间名称命名的文件夹和html网页,文件加里有三个扩展名为.css的文件

  9. Linux下永久修改主机名

    红帽系列的Linux发行版主机名存放位置是/etc/sysconfig/network,Ubuntu Linux主机名存放位置是/etc/hostname,所以只要修改主机名存放文件便可以永久的修改计 ...

  10. Java for LeetCode 033 Search in Rotated Sorted Array

    Suppose a sorted array is rotated at some pivot unknown to you beforehand. (i.e., 0 1 2 4 5 6 7 migh ...