已知椭圆焦点为$F_1(-1,0),F_2(1,0)$,且椭圆与直线$y=x-\sqrt{3}$相切,求
(1)椭圆的方程
(2)过$F_1$作两条相互垂直的直线$l_1,l_2$与椭圆相交于$P,Q,M,N$,求四边形$PNQM$的面积的最大值和最小值.


解答:
1)由直线与椭圆相切的判别法则得

\begin{equation*}
\left\{ \begin{aligned}
a^2+b^2-3 &= 0 \\
a^2-b^2&=1
\end{aligned} \right.
\end{equation*}

得椭圆方程$\dfrac{x^2}{2}+y^2=1$
2)由焦点弦长公式:$L=\dfrac{2ab^2}{b^2+c^2sin^2\alpha}=\dfrac{2\sqrt{2}}{1+\sin^2\alpha}$
故$S=\dfrac{1}{2}|PQ||MN|=\dfrac{4}{(1+sin^2\alpha)(1+cos^2\alpha)}=\dfrac{4}{2+\dfrac{1}{4}sin^22\alpha}\in[\dfrac{16}{9},2]$

MT【214】焦点弦长公式的更多相关文章

  1. 【杨氏矩阵+勾长公式】POJ 2279 Mr. Young's Picture Permutations

    Description Mr. Young wishes to take a picture of his class. The students will stand in rows with ea ...

  2. poj2279 Mr. Young's Picture Permutations[勾长公式 or 线性DP]

    若干人左对齐站成最多5行,给定每行站多少个,列数从第一排开始往后递减.要求身高从每排从左到右递增(我将题意篡改了便于理解233),每列从前向后递增.每个人身高为1...n(n<=30)中的一个数 ...

  3. UVA 11817 Tunnelling the Earth --球面距离公式

    题意: 给出两点的经纬度,求两点的球面距离与直线距离之差. 解法: 我们先算出球面距离,然后可以根据球面距离算出直线距离. 球面距离公式: R*acos(sin(W1)*sin(W2)+cos(W1) ...

  4. Android音频焦点处理相关的方法

    有这么一种场景:你打开qq音乐.优酷客户端.视频播放的时候.这个时候突然来电显示了,此时所有的MediaPlayer相关的服务或者响应都进入"休眠"状态.那么,这个功能是怎么实现的 ...

  5. MT【237】阿基米德三角形的一些常见性质

    阿基米德三角形的常见性质:抛物线:$x^2=2py,AB$为抛物线的弦,$AQ,BQ$为切线,记$Q(x_0,y_0)$则$1)k_{QA}*k_{QB}=\dfrac{p}{2x_0}$$2)k_{ ...

  6. POJ2779 线性DP 或 杨氏三角 和 钩子公式

    POJ2779 线性DP 或 杨氏三角 和 钩子公式 本来就想回顾一下基础的线性DP谁知道今早碰到的都是这种大难题,QQQQ,不会 这个也没有去理解线性DP的解法,了解了杨氏三角和钩子公式,做出了PO ...

  7. 9406LaTeX公式

    需要注意的是: 1.本文只对第四章排版数学公式进行简单整理 2.本文大量内容直接引自官网,尤其是涉及4.开头的标题,为方便读者查阅对比,就不一一删改和引注,你可以点此访问官网对应内容,也可以点此下载我 ...

  8. 航空概论(历年资料,引之百度文库,PS:未调格式,有点乱)

    航空航天尔雅 选择题1. 已经实现了<天方夜谭>中的飞毯设想.—— A——美国2. 地球到月球大约—— C 38 万公里3. 建立了航空史上第一条定期空中路线—— B——德国4. 对于孔明 ...

  9. 个人项目作业$\cdot$求交点个数

    个人项目作业\(\cdot\)求交点个数 一.作业要求简介 本次作业是北航计算机学院软件工程课程的个人项目作业,个人开发能力对于软件开发团队是至关重要的,本项目旨在通过一个求几何图形的交点的需求来使学 ...

随机推荐

  1. Hive 实现 wordcount

    创建表: create table hive_wordcount(context string); load data local inpath '/home/hadoop/files/hellowo ...

  2. CF 958E2. Guard Duty (medium)

    这道题是昨天linkfqy dalao上课讲的一道题 当时他讲的时候就想到了一种玄学的搞法,然后不敢相信自己切掉了 没想到后来CHJ dalao也想到了这种算法,然后发现是对的 后来10min就切掉了 ...

  3. Ionic 中控件点击延迟的处理

    原文发表于我的技术博客 本文分享了在 Ionic 中如何处理控件点击延迟的问题. 原文发表于我的技术博客 1. 问题描述 在 Ionic 中,当在 iOS 环境下运行元素的点击事件时,你会发现点击响应 ...

  4. zookeeper 动态管理nginx配置

    假设我们有一个场景,所有服务器共享同一份配置文件,我们肯定不可能单独手动维护每台服务器,这时可以利用zookeeper的配置管理功能. 环境:python + nginx + zookeeper 目的 ...

  5. xmlSpy套件(Altova MissionKit 2016)的Ollydbg调试过程及破解

    最近工作需要用到XML处理软件,网上找到Altova MissionKit 2016( 包含了XmlSpy.MapForce.StyleVision.UModel.DatabaseSpy等工具),用了 ...

  6. MongoDB副本集(一主一备+仲裁)环境部署-运维操作记录

    MongoDB复制集是一个带有故障转移的主从集群.是从现有的主从模式演变而来,增加了自动故障转移和节点成员自动恢复.MongoDB复制集模式中没有固定的主结点,在启动后,多个服务节点间将自动选举产生一 ...

  7. <a>标签中href="javascript:;"** 为什么 style不用src**

    &src/href <!--href 用于标示资源和文档关系,src 用于替换标签内容--> <img src="xxx.jpg"/> <sc ...

  8. 腾讯QQ的商业模式

    近期听到许多关于腾讯QQ的报道,然后想到之前自己在QQ上遇到的一些问题,一瞬间感觉大脑的所有想法喷涌而出. 以前总觉得QQ是个很好的平台,我们可以通过QQ和自己的亲人朋友爱人聊天,有时候还可以在自己的 ...

  9. git使用(2)

    1.远程仓库 a SSHKEY 第1步:创建SSH Key.在用户主目录下,看看有没有.ssh目录,如果有,再看看这个目录下有没有id_rsa和id_rsa.pub这两个文件,如果已经有了,可直接跳到 ...

  10. 《面向对象程序设计》第三次作业 Calculator

    c++第三次作业 Calculator git上的作业展示点这里. ps:有一点不是很明确,作业要求:将数字和符号提取出来,得到一组string,然后才将这些string存入队列中.按我的理解是需要将 ...