MT【214】焦点弦长公式
已知椭圆焦点为$F_1(-1,0),F_2(1,0)$,且椭圆与直线$y=x-\sqrt{3}$相切,求
(1)椭圆的方程
(2)过$F_1$作两条相互垂直的直线$l_1,l_2$与椭圆相交于$P,Q,M,N$,求四边形$PNQM$的面积的最大值和最小值.
解答:
1)由直线与椭圆相切的判别法则得
\begin{equation*}
\left\{ \begin{aligned}
a^2+b^2-3 &= 0 \\
a^2-b^2&=1
\end{aligned} \right.
\end{equation*}
得椭圆方程$\dfrac{x^2}{2}+y^2=1$
2)由焦点弦长公式:$L=\dfrac{2ab^2}{b^2+c^2sin^2\alpha}=\dfrac{2\sqrt{2}}{1+\sin^2\alpha}$
故$S=\dfrac{1}{2}|PQ||MN|=\dfrac{4}{(1+sin^2\alpha)(1+cos^2\alpha)}=\dfrac{4}{2+\dfrac{1}{4}sin^22\alpha}\in[\dfrac{16}{9},2]$
MT【214】焦点弦长公式的更多相关文章
- 【杨氏矩阵+勾长公式】POJ 2279 Mr. Young's Picture Permutations
Description Mr. Young wishes to take a picture of his class. The students will stand in rows with ea ...
- poj2279 Mr. Young's Picture Permutations[勾长公式 or 线性DP]
若干人左对齐站成最多5行,给定每行站多少个,列数从第一排开始往后递减.要求身高从每排从左到右递增(我将题意篡改了便于理解233),每列从前向后递增.每个人身高为1...n(n<=30)中的一个数 ...
- UVA 11817 Tunnelling the Earth --球面距离公式
题意: 给出两点的经纬度,求两点的球面距离与直线距离之差. 解法: 我们先算出球面距离,然后可以根据球面距离算出直线距离. 球面距离公式: R*acos(sin(W1)*sin(W2)+cos(W1) ...
- Android音频焦点处理相关的方法
有这么一种场景:你打开qq音乐.优酷客户端.视频播放的时候.这个时候突然来电显示了,此时所有的MediaPlayer相关的服务或者响应都进入"休眠"状态.那么,这个功能是怎么实现的 ...
- MT【237】阿基米德三角形的一些常见性质
阿基米德三角形的常见性质:抛物线:$x^2=2py,AB$为抛物线的弦,$AQ,BQ$为切线,记$Q(x_0,y_0)$则$1)k_{QA}*k_{QB}=\dfrac{p}{2x_0}$$2)k_{ ...
- POJ2779 线性DP 或 杨氏三角 和 钩子公式
POJ2779 线性DP 或 杨氏三角 和 钩子公式 本来就想回顾一下基础的线性DP谁知道今早碰到的都是这种大难题,QQQQ,不会 这个也没有去理解线性DP的解法,了解了杨氏三角和钩子公式,做出了PO ...
- 9406LaTeX公式
需要注意的是: 1.本文只对第四章排版数学公式进行简单整理 2.本文大量内容直接引自官网,尤其是涉及4.开头的标题,为方便读者查阅对比,就不一一删改和引注,你可以点此访问官网对应内容,也可以点此下载我 ...
- 航空概论(历年资料,引之百度文库,PS:未调格式,有点乱)
航空航天尔雅 选择题1. 已经实现了<天方夜谭>中的飞毯设想.—— A——美国2. 地球到月球大约—— C 38 万公里3. 建立了航空史上第一条定期空中路线—— B——德国4. 对于孔明 ...
- 个人项目作业$\cdot$求交点个数
个人项目作业\(\cdot\)求交点个数 一.作业要求简介 本次作业是北航计算机学院软件工程课程的个人项目作业,个人开发能力对于软件开发团队是至关重要的,本项目旨在通过一个求几何图形的交点的需求来使学 ...
随机推荐
- 【php增删改查实例】第十七节 - 用户登录(1)
新建一个login文件,里面存放的就是用户登录的模块. <html> <head> <meta charset="utf-8"> <sty ...
- 【强化学习】python 实现 saras 例一
本文作者:hhh5460 本文地址:https://www.cnblogs.com/hhh5460/p/10146554.html 说明:将之前 q-learning 实现的例一,用 saras 重新 ...
- CSS 字体(font)实例
CSS 字体(font)实例CSS 字体属性定义文本的字体系列.大小.加粗.风格(如斜体)和变形(如小型大写字母).CSS 字体系列在 CSS 中,有两种不同类型的字体系列名称: 通用字体系列 - 拥 ...
- 没有 iOS 开发者账号的情况下部署到真机的方法
原文发表于我的技术博客 本文分享了官方推荐的没有 iOS 开发者账号的情况下部署到真机的方法,供参考. 原文发表于我的技术博客 1. 官方推荐的方法 原文在此,也就是 Ionic 官方团队在博客中分享 ...
- Linux下性能调试工具运维笔记
作为一名资深的linux运维工程师,为方便了解和追求服务器的高性能,如cpu.内存.io.网络等等使用情况,要求运维工程师必须要熟练运用一些必要的系统性能调试工具,liunx下提供了众多命令方便查看各 ...
- ZooKeeper 典型的应用场景——及编程实现
如何使用 Zookeeper 作为一个分布式的服务框架,主要用来解决分布式集群中应用系统的一致性问题,它能提供基于类似于文件系统的目录节点树方式的数据存储,但是 Zookeeper 并不是用来专门存储 ...
- Lotto HDU
链接 [http://acm.hdu.edu.cn/showproblem.php?pid=1342] 题意 分析 DFS 代码 #include<cstdio> #include< ...
- linux 第七周 总结及实验
姬梦馨 原创作品 <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 第七周 Linux内核如何装载和启动一 ...
- 20150409作业3 阅读《构建之法》1-5章 (Update:2015-04-16
以下是我看<构建之法>1-5章列出来的知识点和一些自己对部分知识的理解以及一些吐槽...和感受 1.1 软件 = 程序 + 软件工程 (软件工程 = 软件 - 程序(我知道软件是什么,也知 ...
- [福大软工] Z班 评测作业对应表
学号 测试组号 011500908 8 031501102 3 031501118 8 031502106 6 031502109 9 031502113 3 031502142 2 03150220 ...