【CF961G】Partitions(第二类斯特林数)
【CF961G】Partitions(第二类斯特林数)
题面
题解
考虑每个数的贡献,显然每个数前面贡献的系数都是一样的。
枚举当前数所在的集合大小,所以前面的系数\(p\)就是:
p&=\sum_{i=1}^n{n-1\choose i-1}i\begin{Bmatrix}n-i\\k-1\end{Bmatrix}\\
&=\sum_{i=1}^n{n-1\choose i-1}i\frac{1}{(k-1)!}\sum_{j=0}^{k-1}(-1)^j{k-1\choose j} (k-1-j)^{n-i}\\
&=\sum_{i=1}^n{n-1\choose i-1}i\sum_{j=0}^{k-1}\frac{(-1)^j (k-1-j)^{n-i}}{j!(k-1-j)!}\\
&=\sum_{j=0}^{k-1}\frac{(-1)^j }{j!(k-1-j)!}\sum_{i=1}^n{n-1\choose i-1}i(k-1-j)^{n-i}\\
\end{aligned}\]
把后面一半拿出来单独算,令\(t=k-1-j\)
&\ \ \ \sum_{i=1}^n{n-1\choose i-1}it^{n-i}\\
&=\sum_{i=1}^n \frac{(n-1)!}{(i-1)!(n-i)!}it^{n-i}\\
&=\sum_{i=1}^n \frac{(n-1)!}{(i-1)!(n-i)!}(i-1+1)t^{n-i}\\
&=\sum_{i=1}^n \frac{(n-2)!}{(i-2)!(n-i)!}(n-1)t^{n-i}+\sum_{i=1}^n \frac{(n-1)!}{(i-1)!(n-i)!}t^{n-i}\\
&=(n-1)\sum_{i=1}^n {n-2\choose i-2}t^{n-i}+\sum_{i=1}^n{n-1\choose i-1}t^{n-i}\\
&=(n-1)\sum_{i=1}^n {n-2\choose n-i}t^{n-i}+\sum_{i=1}^n{n-1\choose n-i}t^{n-i}\\
&=(n-1)(t+1)^{n-2}+(t+1)^{n-1}
\end{aligned}\]
所以再带回到原式中:
p&=\sum_{j=0}^{k-1}\frac{(-1)^j }{j!(k-1-j)!}\sum_{i=1}^n{n-1\choose i-1}i(k-1-j)^{n-i}\\
&=\sum_{j=0}^{k-1}\frac{(-1)^j }{j!(k-1-j)!}((n-1)(k-j)^{n-2}+(k-j)^{n-1})\\
&=\sum_{j=0}^{k-1}\frac{(-1)^j }{j!(k-1-j)!}(n+k-j-1)(k-j)^{n-2}
\end{aligned}
\]
快速幂就完事了。
然而我在洛谷的题解里面还看到了另外一种考虑的方法:
考虑贡献中的\(|S|\sum w_i\),可以认为是划分出来的集合中,每一个点都对于当前这个点贡献一次\(w_i\)。那么考虑当前点被其它点做的贡献次数。
考虑一个点对\((i,j)\),如果\(i\neq j\),那么方案数就是两者在同一个集合中的方案数,考虑将两个点合并在一起,那么就是\(\begin{Bmatrix}n-1\\k\end{Bmatrix}\),如果\(i=j\),那么无论如何都有贡献,也就是\(\begin{Bmatrix}n\\k\end{Bmatrix}\)。所以,可以得到:
\]
第二类斯特林数直接用容斥展开式计算即可,复杂度不变。
代码是第一种方法的。
#include<iostream>
#include<cstdio>
using namespace std;
#define MAX 200200
#define MOD 1000000007
void add(int &x,int y){x+=y;if(x>=MOD)x-=MOD;}
int fpow(int a,int b)
{
int s=1;if(b<0)return 1;
while(b){if(b&1)s=1ll*s*a%MOD;a=1ll*a*a%MOD;b>>=1;}
return s;
}
int n,K,ans,p;
int jc[MAX],jv[MAX],inv[MAX];
int main()
{
scanf("%d%d",&n,&K);
for(int i=1,x;i<=n;++i)scanf("%d",&x),add(ans,x);
inv[0]=inv[1]=jc[0]=jv[0]=1;
for(int i=1;i<=K;++i)jc[i]=1ll*jc[i-1]*i%MOD;
for(int i=2;i<=K;++i)inv[i]=1ll*inv[MOD%i]*(MOD-MOD/i)%MOD;
for(int i=1;i<=K;++i)jv[i]=1ll*jv[i-1]*inv[i]%MOD;
for(int i=0,d=1;i<K;++i,d=MOD-d)
add(p,1ll*d*jv[i]%MOD*jv[K-1-i]%MOD*(n+K-i-1)%MOD*fpow(K-i,n-2)%MOD);
ans=1ll*ans*p%MOD;
printf("%d\n",ans);
return 0;
}
【CF961G】Partitions(第二类斯特林数)的更多相关文章
- CF961G Partitions(第二类斯特林数)
题目 CF961G 前置 斯特林数\(\Longrightarrow\)斯特林数及反演总结 做法 相信大家能得出一个一眼式:\[Ans=\sum\limits_{i=1}^n w_i\sum\limi ...
- 【CF961G】Partitions 第二类斯特林数
[CF961G]Partitions 题意:给出n个物品,每个物品有一个权值$w_i$,定义一个集合$S$的权值为$W(S)=|S|\sum\limits_{x\in S} w_x$,定义一个划分的权 ...
- CF961G Partitions(第二类斯特林数)
传送门 对于每一个元素,我们只要能求出它的出现次数\(sum\),那么每个元素的贡献都是一样的,最终的答案为\(sum\times \sum_{i=1}^n w_i\) 那么分别讨论 如果这个元素自己 ...
- 【cf961G】G. Partitions(组合意义+第二类斯特林数)
传送门 题意: 给出\(n\)个元素,每个元素有价值\(w_i\).现在要对这\(n\)个元素进行划分,共划分为\(k\)组.每一组的价值为\(|S|\sum_{i=0}^{|S|}w_i\). 最后 ...
- 【BZOJ5093】图的价值(第二类斯特林数,组合数学,NTT)
[BZOJ5093]图的价值(第二类斯特林数,组合数学,NTT) 题面 BZOJ 题解 单独考虑每一个点的贡献: 因为不知道它连了几条边,所以枚举一下 \[\sum_{i=0}^{n-1}C_{n-1 ...
- 【BZOJ4555】求和(第二类斯特林数,组合数学,NTT)
[BZOJ4555]求和(第二类斯特林数,组合数学,NTT) 题面 BZOJ 题解 推推柿子 \[\sum_{i=0}^n\sum_{j=0}^iS(i,j)·j!·2^j\] \[=\sum_{i= ...
- CF932E Team Work(第二类斯特林数)
传送门:CF原网 洛谷 题意:给定 $n,k$,求 $\sum\limits^n_{i=1}\dbinom{n}{i}i^k\bmod(10^9+7)$. $1\le n\le 10^9,1\le k ...
- HDU - 4625 JZPTREE(第二类斯特林数+树DP)
https://vjudge.net/problem/HDU-4625 题意 给出一颗树,边权为1,对于每个结点u,求sigma(dist(u,v)^k). 分析 贴个官方题解 n^k并不好转移,于是 ...
- 【CF932E】Team Work(第二类斯特林数)
[CF932E]Team Work(第二类斯特林数) 题面 洛谷 CF 求\(\sum_{i=1}^nC_{n}^i*i^k\) 题解 寒假的时候被带飞,这题被带着写了一遍.事实上并不难,我们来颓柿子 ...
随机推荐
- WPF CheckBox 滑块 样式 开关
原文:WPF CheckBox 滑块 样式 开关 效果图 样式代码 <Style x:Key="CheckRadioFocusVisual"> <Setter P ...
- EZ 2018 06 10 NOIP2018 模拟赛(十八)
好久没写blog&&比赛题解了,最近补一下 这次还是很狗的,T3想了很久最后竟然连并查集都忘写了,然后T2map莫名爆炸. Rating爆减......链接不解释 好了我们开始看题. ...
- [Spark][Python]spark 从 avro 文件获取 Dataframe 的例子
[Spark][Python]spark 从 avro 文件获取 Dataframe 的例子 从如下地址获取文件: https://github.com/databricks/spark-avro/r ...
- asp.net mvc 实现上传文件带进度条
本文乃是博主早期写的,此种思路虽然实现了,但固然不是最好的,仅做参考学习. 可以用js onprogress .fileinput .webuploader.jq ajaxsubmit等实现 思路:a ...
- jsonrpc环境搭建和简单实例
一.环境准备 下载需要的jar包和js文件,下载地址:https://yunpan.cn/cxvbm9DhK9tDq 访问密码 6a50 二.新建一个web工程,jsonrpc-1.0.jar复制到 ...
- php类之clone 克隆
对象也能被“克隆” 在php5中,对象的传递方式默认为引用传递,如果我们想要在内存中生成两个一样的对象或者创建一个对象的副本,这时可以使用“克隆”. 通过 clone 克隆一个对象 对象的复制是通过关 ...
- 函数:this & return、break、continue、exit()
this this:的指向在函数定义的时候是确定不了的,只有函数执行的时候才能确定this到底指向谁,实际上this的最终指向的是那个调用它的对象在调用的时候才能决定,谁调用的就指向谁. 情景1:指向 ...
- React++ node.js ++SQL Sever ++MySQL++ python ++ php ++ java ++ c++ c#++ java ++ android ++ ios ++Linux+
"C语言在它诞生的那个年代,是非常不错的语言,可惜没有OOP.当项目臃肿到一定程度,人类就不可控了. 为了弥补这个缺陷,C++诞生了.而为了应对各种情况,C++设计的大而全,太多复杂的特性, ...
- Scrum Meeting NO.9
Scrum Meeting No.9 1.会议内容 2.任务清单 徐越 序号 近期的任务 进行中 已完成 1 代码重构:前端通讯模块改为HttpClient+Json √ 2 "我" ...
- NullPointerException-----开发中遇到的空指针异常
1.使用CollectionUtils.isEmpty判断空集合 public class TestIsEmpty { static class Person{} static class Girl ...