luogu3645 [Apio2015]雅加达的摩天大楼 (分块+dijkstra)
我们是想跑最短路的
我们有两种建图方式:
1.对于每个doge i,连向B[j]==B[i]+P[i]*k ,k=..,-2,-1,0,1,2,... ,边权=|k|,这样连的复杂度是$O(N\sum\limits_{i=1}^{m}\frac{1}{P[i]})$
2.对于每个楼i,建max(P[i])个点,表示可以有一个doge经过这个楼来跳j个距离,也就是说,给P[i][j]连向P[i-j][j]和P[i+j][j],边权=1,而且还要给所有的P[i]连起来,边权是0.
这样连的复杂度是$O(N\sum\limits_{i=1}^{m}P[i])$,其中P[i]是互不相同的(相同就不加了)
然而都过不了
然后我们发现,复杂度一个是乘P[i],一个是除以P[i],这就启发我们采用分块的思想,对于P[i]大于$\sqrt{N}$的使用第1种建法,小于的使用第二种建法,整体的复杂度就变成$O(N\sqrt{N})$了
然而因为玄学的常数问题,我们需要:
1.让那个分块的边界取$min(\sqrt{N},100)$(我也不知道为什么)
2.在做最短路的时候再计算边,而不是提前都建好
3.深吸一口氧气(必要)
4.使用spfa而不是dijkstra(我也不知道为什么,但我还是用了dijkstra,然后就挂了...)
(代码写一年还写得巨丑)
#include<bits/stdc++.h>
#define pa pair<int,int>
#define lowb(x) ((x)&(-(x)))
#define REP(i,n0,n) for(i=n0;i<=n;i++)
#define PER(i,n0,n) for(i=n;i>=n0;i--)
#define MAX(a,b) ((a>b)?a:b)
#define MIN(a,b) ((a<b)?a:b)
#define CLR(a,x) memset(a,x,sizeof(a))
#define rei register int
using namespace std;
typedef long long ll;
const int maxn=,sqrtn=; inline ll rd(){
ll x=;char c=getchar();int neg=;
while(c<''||c>''){if(c=='-') neg=-;c=getchar();}
while(c>=''&&c<='') x=x*+c-'',c=getchar();
return x*neg;
} struct Node{
int x,y,d;bool isp;
Node (int a,int b,int c,bool s){x=a,y=b,d=c,isp=s;}
}S=Node(,,,);
int N,SN,M,B[maxn],P[maxn];
int dis[maxn*sqrtn],poi[maxn][],ph[maxn];
bool flag[maxn*sqrtn];
priority_queue<Node,vector<Node>,greater<Node> > q; bool operator > (Node a,Node b){return a.d>b.d;}
inline int id(Node a){return a.isp?a.x:M++a.x+a.y*N;}
inline void print(int x,Node a){printf("Node%d:%d %d %d %d\n",x,a.x,a.y,a.d,a.isp);} inline int dijkstra(){
memset(dis,,sizeof(dis));
dis[id(S)]=;q.push(S);
while(!q.empty()){
Node p=q.top();q.pop();
if(((!p.isp)&&p.x==B[])||(p.isp&&p.x==)) return p.d;
if(flag[id(p)]) continue; if(!p.isp){
for(int i=ph[p.x];i!=-;i=poi[i][]){
if(P[poi[i][]]>SN){
if(dis[poi[i][]]<=p.d) continue;
dis[poi[i][]]=p.d;
q.push(Node(poi[i][],,p.d,));
}else if(P[poi[i][]]!=p.y){
Node x=Node(p.x,P[poi[i][]],p.d,);
if(dis[id(x)]<=p.d) continue;
dis[id(x)]=p.d;q.push(x);
}
}
if(p.y){
Node xx=Node(p.x+p.y,p.y,p.d+,);
if(p.x+p.y<N&&dis[id(xx)]>p.d+){
dis[id(xx)]=p.d+;
q.push(xx);
}xx.x=p.x-p.y;
if(p.x-p.y>=&&dis[id(xx)]>p.d+){
dis[id(xx)]=p.d+;
q.push(xx);
}
}
}
else{
for(int i=B[p.x]+P[p.x],j=;i<N;i+=P[p.x],j++){
Node a=Node(i,,p.d+j,);
if(dis[id(a)]>p.d+j){
dis[id(a)]=p.d+j;q.push(a);
}
}
for(int i=B[p.x]-P[p.x],j=;i>=;i-=P[p.x],j++){
Node a=Node(i,,p.d+j,);
if(dis[id(a)]>p.d+j){
dis[id(a)]=p.d+j;q.push(a);
}
}
}
flag[id(p)]=;
}return -;
} int main(){
//freopen(".in","r",stdin);
rei i,j,k;
N=rd(),M=rd();SN=min(,(int)sqrt(N));
memset(ph,-,sizeof(ph));
for(i=;i<M;i++){
B[i]=rd(),P[i]=rd();
poi[i][]=i;poi[i][]=ph[B[i]];ph[B[i]]=i;
}S=Node(B[],,,);
printf("%d\n",dijkstra());
return ;
}
luogu3645 [Apio2015]雅加达的摩天大楼 (分块+dijkstra)的更多相关文章
- [APIO2015] 雅加达的摩天楼 (分块,最短路)
题目链接 Solution 分块+\(Dijkstra\). 难点在于建边,很明显 \(O(n^2)\) 建边会挂一堆 . 那么考虑一下, \(n^2\) 建边多余的是哪些东西 \(???\) 很显然 ...
- luogu P3645 [APIO2015]雅加达的摩天楼 分块 根号分治
LINK:雅加达的摩天楼 容易想到设\(f_{i,j}\)表示第i个\(doge\)在第j层楼的最小步数. 转移显然是bfs.值得一提的是把初始某层的\(doge\)加入队列 然后转移边权全为1不需要 ...
- BZOJ 4070 [Apio2015]雅加达的摩天楼 ——分块 SPFA
挺有趣的分块的题目. 直接暴力建边SPFA貌似是$O(nm)$的. 然后考虑分块,$\sqrt n$一下用虚拟节点辅助连边, 以上的直接暴力连边即可. 然后卡卡时间,卡卡空间. 终于在UOJ上T掉辣. ...
- bzoj 4070 [Apio2015]雅加达的摩天楼 Dijkstra+建图
[Apio2015]雅加达的摩天楼 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 644 Solved: 238[Submit][Status][D ...
- 【BZOJ4070】[Apio2015]雅加达的摩天楼 set+最短路
[BZOJ4070][Apio2015]雅加达的摩天楼 Description 印尼首都雅加达市有 N 座摩天楼,它们排列成一条直线,我们从左到右依次将它们编号为 0 到 N−1.除了这 N 座摩天楼 ...
- BZOJ 4070:[APIO2015]雅加达的摩天楼 最短路
4070: [Apio2015]雅加达的摩天楼 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 464 Solved: 164[Submit][Sta ...
- 【题解】P3645 [APIO2015]雅加达的摩天楼(分层图最短路)
[题解]P3645 [APIO2015]雅加达的摩天楼(分层图最短路) 感觉分层图是个很灵活的东西 直接连边的话,边数是\(O(n^2)\)的过不去 然而我们有一个优化的办法,可以建一个新图\(G=( ...
- 洛谷P3645 [APIO2015]雅加达的摩天楼(最短路+分块)
传送门 这最短路的建图怎么和网络流一样玄学…… 一个最朴素的想法是从每一个点向它能到达的所有点连边,边权为跳的次数,然后跑最短路(然而边数是$O(n^2)$除非自创复杂度比spfa和dijkstra还 ...
- BZOJ4070 [Apio2015]雅加达的摩天楼 【分块 + 最短路】
题目链接 BZOJ4070 题解 考虑暴力建图,将每个\(B_i\)向其能到的点连边,复杂度\(O(\sum \frac{n}{p_i})\),当\(p\)比较小时不适用 考虑优化建图,每个\(dog ...
随机推荐
- 绍一集训Round#1
到了之后看题,T1一看发现真熟悉,和之前做的一道题真的像,然后内心: 这里是绍一啊,不可能就出这么简单的题 我题意没理解错啊,这不是单独计算每条边的贡献么 维护一个人数的大小,然后直接搞一波就可以了吧 ...
- [python]python 遍历一个list 的小例子:
[python]python 遍历一个list 的小例子: mlist=["aaa","bbb","ccc"]for ss in enume ...
- Scala学习(八)---Scala继承
Scala继承 摘要: 在本篇中,你将了解到Scala的继承与Java和C++最显著的不同.要点包括: 1. extends.final关键字和Java中相同 2. 重写方法时必须用override ...
- Apache Spark 2.2中基于成本的优化器(CBO)(转载)
Apache Spark 2.2最近引入了高级的基于成本的优化器框架用于收集并均衡不同的列数据的统计工作 (例如., 基(cardinality).唯一值的数量.空值.最大最小值.平均/最大长度,等等 ...
- 【亲测有效】无法定位链接器!请检查 tools\link.ini 中的配置是否正确的解决方案
在进行易语言静态编译的时候,出现了如下错误: 正在进行名称连接...正在统计需要编译的子程序正在编译...正在生成主程序入口代码程序代码编译成功等待用户输入欲编译到的文件名正在进行名称连接...开始静 ...
- Linux下对文件进行加密备份的操作记录
由于公司之前在阿里云上购买了一些机器,后续IDC建设好后,又将线上业务从阿里云上迁移到IDC机器上了,为了不浪费阿里云上的这几台机器资源,打算将这些机器做成IP SAN共享存储,然后作为IDC数据的一 ...
- MFS+Keepalived双机高可用热备方案操作记录
基于MFS的单点及手动备份的缺陷,考虑将其与Keepalived相结合以提高可用性.在Centos下MooseFS(MFS)分布式存储共享环境部署记录这篇文档部署环境的基础上,只需要做如下改动: 1) ...
- css-preprocessors
what ? 预处理器是css 能够使用 变量.操作符.函数.mixins.interpolations 等类似于js 功能的一种语言. 目前比较常用是三种:SASS.less .stylus . W ...
- 《移山之道》Reading Task
老师布置的阅读任务虽然是附加的作业,但是对我来说是个很好的学习机会.软件工程主要是对工程的开发进行学习,毕竟在学校老师教了那么多的知识,我们课下做了那么多的练习并没有提高我们做一个工程的能力.一个项目 ...
- 结对项目junit测试用例
题目:我们假设我们要写一个整数除法的类,并且给他写测试用例. 结对分工:滕娟负责写代码,搜集资料,整理,潘广玫负责进行测试,处理测试结果 github地址链接: https://github.com/ ...