P1054 等价表达式

题目描述

明明进了中学之后,学到了代数表达式。有一天,他碰到一个很麻烦的选择题。这个题目的题干中首先给出了一个代数表达式,然后列出了若干选项,每个选项也是一个代数表达式,题目的要求是判断选项中哪些代数表达式是和题干中的表达式等价的。

这个题目手算很麻烦,因为明明对计算机编程很感兴趣,所以他想是不是可以用计算机来解决这个问题。假设你是明明,能完成这个任务吗?

这个选择题中的每个表达式都满足下面的性质:

1. 表达式只可能包含一个变量‘a’。 2. 表达式中出现的数都是正整数,而且都小于10000。 3. 表达式中可以包括四种运算‘+’(加),‘-’(减),‘’(乘),‘’(乘幂),以及小括号‘(’,‘)’。小括号的优先级最高,其次是‘’,然后是‘’,最后是‘+’和‘-’。‘+’和‘-’的优先级是相同的。相同优先级的运算从左到右进行。(注意:运算符‘+’,‘-’,‘*’,‘^’以及小括号‘(’,‘)’都是英文字符) 4. 幂指数只可能是1到10之间的正整数(包括1和10)。 5. 表达式内部,头部或者尾部都可能有一些多余的空格。

下面是一些合理的表达式的例子:

((a^1) ^ 2)^3,aa+a-a,((a+a)),9999+(a-a)a,1 + (a -1)3,110^9……

输入输出格式

输入格式:

输入文件的第一行给出的是题干中的表达式。

第二行是一个整数n(2 <= n <= 26),表示选项的个数。后面n行,每行包括一个选项中的表达式。这n个选项的标号分别是A,B,C,D……

输入中的表达式的长度都不超过50个字符,而且保证选项中总有表达式和题干中的表达式是等价的。

输出格式:

输出文件包括一行,这一行包括一系列选项的标号,表示哪些选项是和题干中的表达式等价的。选项的标号按照字母顺序排列,而且之间没有空格。


写完这道题我真想吐血十升。。。

写完这道题我真想吐血十升。。。

写完这道题我真想吐血十升。。。


两个点:

  1. 完美算法不好写,提供一些质数作为a的值代入计算即可
  2. 中缀表达式转后(前)缀表达式。

  • 中缀表达式转后缀表达式

栈s1存数字或运算符,s2存运算符

从左至右扫描

数字进s1

运算符讨论

若s2栈顶优先级小于进来的,我们认为是合法的(想想为什么等于不行)

否则弹出s2到s1直到合法

括号要多一些判断


非完美算法的细节:

  1. 为了避免爆ll,要mod一个大质数。

质数不能太大,不然依旧会爆

也不能太小,不然负数模会出问题

(幸运数字1000000007)

不能每一步都膜,会很慢

  1. a的取值要小,否则很可能要出问题

  2. a的数量不能多不能少,否则很可能会出问题


总结:非完美算法要在看脸的基础上,多想想


code:

// luogu-judger-enable-o2
#include <cstdio>
#include <cstring>
#include <stack>
#define ll long long
using namespace std;
int n;
ll last[15],now[15];
int is[260];
ll pre[5]={5,7,11,2,3};
ll mod=1000000007;
char C[60];
void init()
{
for(int i='0';i<='9';i++)
is[i]=1;
is[int('(')]=2;
is[int('+')]=3;
is[int('-')]=3;
is[int('*')]=4;
is[int('^')]=5;
is[int(')')]=6;
is[int('a')]=7;
}
int cnt;
void read()
{
char c=getchar();
while(!is[c]) c=getchar();
cnt=-1;
while(c!='\r')
{
if(is[c])
C[++cnt]=c;
c=getchar();
}
} struct node
{
int k;//符号1还是数字0
ll c;//数学或者AS码
node(){}
node(int k,ll c)
{
this->k=k;
this->c=c;
}
}; ll get_pow(ll n1,ll n2)
{
ll nn=1;
while(n2)
{
nn=nn*n1;
if(nn>=mod)
nn%=mod;
n2--;
}
return nn;
} stack <node > s1,s2; bool get(char *now,int cnt,int flag)
{
while(!s1.empty()) s1.pop();
while(!s2.empty()) s2.pop();
for(int k=0;k<=4;k++)
{
for(int i=0;i<=cnt;i++)
{
ll x=0;
char c=*(now+i);
if(is[c]==1)
{
while(is[c]==1&&i<=cnt) {x=x*10+c-'0';i++;c=*(now+i);}
node tt(0,x);
s1.push(tt);
i--;
}
else if(is[c]==7)
{
node tt(0,pre[k]);
s1.push(tt);
}
else if(is[c]==6)
{
while(!s2.empty())
{
if(s2.top().k&&is[s2.top().c]==2)
break;
s1.push(s2.top());
s2.pop();
}
if(s2.empty())
return false;
else
s2.pop();
}
else
{
node tt(1,c);
while(!s2.empty()&&is[s2.top().c]>=is[c]&&s2.top().c!='('&&c!='(')
{
s1.push(s2.top());
s2.pop();
}
s2.push(tt);
}
}
while(!s2.empty())
{
if(is[s2.top().c]==2)
return false;
s1.push(s2.top());
s2.pop();
}
while(!s1.empty())
{
s2.push(s1.top());
//printf("%d ",s1.top().c);
s1.pop();
}
//printf("\n");
while(!s2.empty())
{
node tt=s2.top();
s2.pop();
if(tt.k)
{
ll t1=s1.top().c;
s1.pop();
ll t2=s1.top().c;
s1.pop();
ll t3;
if(char(tt.c)=='+')
t3=t1+t2;
else if(char(tt.c)=='-')
t3=t2-t1;
else if(is[tt.c]==4)
{
t3=t2*t1;
if(t3>=mod)
t3%=mod;
}
else if(is[tt.c]==5)
t3=get_pow(t2,t1);
tt.c=t3;
tt.k=0;
s1.push(tt);
}
else
s1.push(tt);
}
int ttt=s1.top().c%mod;
if(flag)
last[k]=s1.top().c%mod;
else if(last[k]!=ttt)
return false;
s1.pop();
}
return true;
} int main()
{
init();
read();
get(C,cnt,1);
char c=getchar();
n=0;
while(!is[c]) c=getchar();
while(c!='\r') {n=n*10+c-'0';c=getchar();}
for(int i=0;i<n;i++)
{
read();
if(get(C,cnt,0))
printf("%c",char(i+'A'));
}
return 0;
}

2018.4.29

洛谷 P1054 等价表达式 解题报告的更多相关文章

  1. 洛谷 P1054 等价表达式

    洛谷 P1054 等价表达式 题目描述 明明进了中学之后,学到了代数表达式.有一天,他碰到一个很麻烦的选择题.这个题目的题干中首先给出了一个代数表达式,然后列出了若干选项,每个选项也是一个代数表达式, ...

  2. 洛谷P1054 等价表达式

    P1054 等价表达式 题目描述 明明进了中学之后,学到了代数表达式.有一天,他碰到一个很麻烦的选择题.这个题目的题干中首先给出了一个代数表达式,然后列出了若干选项,每个选项也是一个代数表达式,题目的 ...

  3. [NOIP2005] 提高组 洛谷P1054 等价表达式

    题目描述 明明进了中学之后,学到了代数表达式.有一天,他碰到一个很麻烦的选择题.这个题目的题干中首先给出了一个代数表达式,然后列出了若干选项,每个选项也是一个代数表达式,题目的要求是判断选项中哪些代数 ...

  4. 洛谷 P1783 海滩防御 解题报告

    P1783 海滩防御 题目描述 WLP同学最近迷上了一款网络联机对战游戏(终于知道为毛JOHNKRAM每天刷洛谷效率那么低了),但是他却为了这个游戏很苦恼,因为他在海边的造船厂和仓库总是被敌方派人偷袭 ...

  5. 洛谷 P4597 序列sequence 解题报告

    P4597 序列sequence 题目背景 原题\(\tt{cf13c}\)数据加强版 题目描述 给定一个序列,每次操作可以把某个数\(+1\)或\(-1\).要求把序列变成非降数列.而且要求修改后的 ...

  6. 洛谷1087 FBI树 解题报告

    洛谷1087 FBI树 本题地址:http://www.luogu.org/problem/show?pid=1087 题目描述 我们可以把由“0”和“1”组成的字符串分为三类:全“0”串称为B串,全 ...

  7. NOIP2005 等价表达式 解题报告

    明明进了中学之后,学到了代数表达式.有一天,他碰到一个很麻烦的选择题.这个题目的题干中首先给出了一个代数表达式,然后列出了若干选项,每个选项也是一个代数表达式,题目的要求是判断选项中哪些代数表达式是和 ...

  8. 洛谷 [CQOI2015]选数 解题报告

    [CQOI2015]选数 题目描述 我们知道,从区间\([L,H]\)(\(L\)和\(H\)为整数)中选取\(N\)个整数,总共有\((H-L+1)^N\)种方案. 小\(z\)很好奇这样选出的数的 ...

  9. 洛谷 P2444 [POI2000]病毒 解题报告

    P2444 [POI2000]病毒 题目描述 二进制病毒审查委员会最近发现了如下的规律:某些确定的二进制串是病毒的代码.如果某段代码中不存在任何一段病毒代码,那么我们就称这段代码是安全的.现在委员会已 ...

随机推荐

  1. 以英雄联盟的方式建模,谈对依赖注入(DI)的理解以及Autofac的用法(一)

    一.前言 近期在探索分层架构和架构设计,选择了领域驱动作为5年.Net开发后的新的方向,不可避免的接触了IoC/DI方面的技术.目前通过反射或其他方法都已实现,但只知其一,并没有考虑为什么要这么做,同 ...

  2. Spring+SpringMVC+MyBatis整合(easyUI、AdminLte3)

    实战篇(付费教程) 花了几天的时间,做了一个网站小 Demo,最终效果也与此网站类似.以下是这次实战项目的 Demo 演示. 登录页: 富文本编辑页: 图片上传: 退出登录: SSM 搭建精美实用的管 ...

  3. WPF 录屏软件研发心得及思路分享(已结束开发)

    最近由于工程需要开始研发基于Windows的自动录屏软件,很多细节很多功能需要处理,毕竟一个完美的录屏软件不是你随随便便就可以写出来的.首先参考了大部分的录屏软件,在研发的过程中遇到了很多的问题:比如 ...

  4. Java各厂对外的优质博客

    1.美团:https://tech.meituan.com/ 2.极客学院:http://wiki.jikexueyuan.com/list/java/

  5. c#基础系列3---深入理解ref 和out

    "大菜":源于自己刚踏入猿途混沌时起,自我感觉不是一般的菜,因而得名"大菜",于自身共勉. 扩展阅读 c#基础系列1---深入理解 值类型和引用类型 c#基础系 ...

  6. 深入浅出Automation Anywhere

    Automation Anywhere是基于CLIENT-SERVER架构(control room和客户端),客户端主要是Bot Creator 和 BotRunner 主要构成: 1.WEBCR: ...

  7. 忘记mysql数据库root密码

    找到配置文件my.ini  ,然后将其打开,可以选择用记事本打开,查找的方法如下: 打开后,搜索mysqld关键字 找到后,在mysqld下面添加skip-grant-tables,保存退出. PS: ...

  8. 《Linux内核分析》第五周笔记 扒开系统调用的三层皮(下)

    扒开系统调用的三层皮(下) 一.给menuOS增加time和time-asm 通过内核调试系统调用.将上次做的实验加入到menusOS,变成menusOS里面的两个命令. 1 int Getpid(i ...

  9. Linux内核分析(第七周)

    可执行程序的装载 一.预处理.编译.链接和目标文件的格式 1.可执行程序怎么来的? 预处理: gcc -E -o hello.cpp hello.c -m32 *负责把include的文件包含进来及宏 ...

  10. github学习步骤

    组员1:    王文政      201303011159 作业网址 :https://github.com/1246251747/3/blob/master/jjj.txt 心得: 1.  申请gi ...