题目链接

BZOJ3118

题解

少有的单纯形好题啊

我们先抽离出生成树

生成树中的边只可能减,其它边只可能加

对于不在生成树的边,其权值一定要比生成树中其端点之间的路径上所有的边都大

然后就是一个最小化的线性规划

为了防止限制过多

我们只需对原先生成树中的比该边大的边建立限制即可

然后就是单纯形 + 对偶

双倍经验

#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<vector>
#include<queue>
#include<cmath>
#include<map>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define cls(s,v) memset(s,v,sizeof(s))
#define mp(a,b) make_pair<int,int>(a,b)
#define cp pair<int,int>
using namespace std;
const int maxn = 1005,maxm = 10005,NN = 1005;
const double eps = 1e-10,INF = 1e15;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = 0; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 1) + (out << 3) + c - 48; c = getchar();}
return flag ? out : -out;
}
int h[maxn],ne = 1;
struct EDGE{int to,nxt,id;}ed[maxn << 1];
inline void build(int u,int v,int id){
ed[++ne] = (EDGE){v,h[u],id}; h[u] = ne;
ed[++ne] = (EDGE){u,h[v],id}; h[v] = ne;
}
int n,m,N,M;
int dep[maxn],fa[maxn],id[maxn];
int U[NN],V[NN],W[NN],F[NN],A[NN],B[NN];
double a[maxn][maxm];
void dfs(int u){
Redge(u) if ((to = ed[k].to) != fa[u]){
fa[to] = u; dep[to] = dep[u] + 1; id[to] = ed[k].id;
dfs(to);
}
}
void Pivot(int l,int e){
double t = a[l][e]; a[l][e] = 1;
for (int j = 0; j <= n; j++) a[l][j] /= t;
for (int i = 0; i <= m; i++) if (i != l && fabs(a[i][e]) > 0){
t = a[i][e]; a[i][e] = 0;
for (int j = 0; j <= n; j++)
a[i][j] -= a[l][j] * t;
}
}
void simplex(){
while (true){
int l = 0,e = 0; double mn = INF;
for (int j = 1; j <= n; j++) if (a[0][j] > eps){e = j; break;}
if (!e) break;
for (int i = 1; i <= m; i++) if (a[i][e] > eps && a[i][0] / a[i][e] < mn)
mn = a[i][0] / a[i][e],l = i;
Pivot(l,e);
}
}
int main(){
N = read(); M = read();
REP(i,M){
U[i] = read(); V[i] = read(); W[i] = read();
F[i] = read(); A[i] = read(); B[i] = read();
if (F[i]) build(U[i],V[i],i);
}
dfs(1);
n = M;
REP(i,M){
if (F[i]) a[i][0] = B[i];
else{
a[i][0] = A[i];
int u = U[i],v = V[i],x;
while (u != v){
if (dep[u] < dep[v]) swap(u,v);
x = id[u];
if (W[x] > W[i]){
m++;
a[x][m] = a[i][m] = 1;
a[0][m] = W[x] - W[i];
}
u = fa[u];
}
}
}
swap(n,m);
simplex();
printf("%.0lf\n",-a[0][0]);
return 0;
}

BZOJ3118 Orz the MST 【单纯形 + 生成树】的更多相关文章

  1. BZOJ3118 : Orz the MST

    对于树边显然只需要减少权值,对于非树边显然只需要增加权值 设i不为树边,j为树边 X[i]:i增加量 X[j]:j减少量 C[i]:修改1单位i的代价 对于每条非树边i(u,v),在树上u到v路径上的 ...

  2. bzoj3118: Orz the MST(线性规划+单纯形法)

    传送门 不难发现,对于每一条树边肯定要减小它的权值,对于每一条非树边要增加它的权值 对于每一条非树边\(j\),他肯定与某些树边构成了一个环,那么它的边权必须大于等于这个环上的所有边 设其中一条边为\ ...

  3. bzoj 3118: Orz the MST(单纯形)

    题目链接:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3118 题意:给出一个图以及图中指定的n-1条边组成的生成树.每条边权值加1或者减去 ...

  4. BZOJ 3118 Orz the MST

    权限题qwq 如果我们要使得某棵生成树为最小生成树,那么上面的边都不能被替代,具体的,对于一个非树边,它的权值要\(\ge\)它两端点在树上的路径上的所以边的权值,所以对于每个非树边就可以对一些树边列 ...

  5. CISCO交换机STP实验(生成树协议)

    目录 一.前言:生成树协议(STP) 二.CISCO交换机STP命令汇总 三.运用STP搭建简单拓扑 四.实战:STP综合实验 五.结语 一.前言:生成树协议(STP) 计算机网络中,我们为了减少网络 ...

  6. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  7. [ An Ac a Day ^_^ ][kuangbin带你飞]专题八 生成树 POJ 1679 The Unique MST

    求最小生成树是否唯一 求一遍最小生成树再求一遍次小生成树 看看值是否相等就可以 #include<cstdio> #include<iostream> #include< ...

  8. HDU 5627 Clarke and MST &意义下最大生成树 贪心

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5627 题意:Bestcoder的一道题,让你求&意义下的最大生成树. 解法: 贪心,我们从高位 ...

  9. NOI模拟题4 Problem A: 生成树(mst)

    Solution 我们考虑答案的表达式: \[ ans = \sqrt{\frac{\sum_{i = 1}^{n - 1} (w_i - \overline{w})^2}{n - 1}} \] 其中 ...

随机推荐

  1. asp.net mvc 实现上传文件带进度条

    本文乃是博主早期写的,此种思路虽然实现了,但固然不是最好的,仅做参考学习. 可以用js onprogress .fileinput .webuploader.jq ajaxsubmit等实现 思路:a ...

  2. v-for v-if || v-else

    <el-col> <div v-for="item in resultDetail" class="physical-content" v-i ...

  3. 898 C. Phone Numbers

    传送门 [http://codeforces.com/contest/898/problem/C] 题意 题意比较难理解直接看样例就知道了,给你个n接下来n行,每行包括一个名字和号码的数量,还有具体的 ...

  4. scipy的一些函数名

    rvs:随机变量pdf:概率密度函数cdf:累计分布函数sf:残存函数(1-CDF)ppf:分位点函数(CDF的逆)isf:逆残存函数(sf的逆)stats:返回均值,方差,(费舍尔)偏态,(费舍尔) ...

  5. JavaScript浏览器历史的语法小问题

    https://www.w3schools.com/jsref/met_his_back.asp This is the same as clicking the "Back button& ...

  6. vue中eventbus被多次触发(vue中使用eventbus踩过的坑)【bus.$on事件被多次绑定】

    问题描述:只要页面没有强制刷新,存在组件切换,bus.$on方法会被多次绑定,造成事件多次触发   触发bus.$on中绑定的方法.png   bus.$on多次绑定.png 解决办法:在每次调用方法 ...

  7. 设计模式之抽象工厂模式(附带类似反射功能的实现/c++)

    问题描述 假设我们要开发一款游戏, 当然为了吸引更多的人玩, 游戏难度不能太大(让大家都没有信心了,估计游戏也就没有前途了),但是也不能太简单(没有挑战性也不符合玩家的心理).于是我们就可以采用这样一 ...

  8. TF版本的Word2Vec和余弦相似度的计算

    前几天一个同学在看一段代码,内容是使用gensim包提供的Word2Vec方法训练得到词向量,里面有几个变量code.count.index.point看不懂,就向我求助,我大概给他讲了下code是哈 ...

  9. js脚本 将本地图片路径转换为html

    公司业务类似于电商, 因此有很多纯图片展示的商品详情页, 类似淘宝店商品页面下的多个图片组成的商品详情页, 页面很简单, 就是一大串img标签, 但是每次做详情页都要配合emmet一顿操作( 如下图 ...

  10. ubuntu 安装 postgresql

    安装环境: Ubuntu 10.04-desktop-i386 PostgreSQL 8.4 1. 安装PostgreSQL 输入如下命令 sudo apt-get install postgresq ...