题意:

给定三个矩形,选定三个点,答案加上第一个点出发经过第二个点在第三个点结束的方案数,只能往右或往下走。

折腾了我半个多下午的题。

设三个矩形为$A,B,C$
一个思路是枚举$B$的那个点$s(x,y)$,求出$s$到$A$中所有点的方案数的和乘上$x$到$B$中所有点的方案数的和,复杂度爆炸。

$s$到$A$中所有点的方案数的和等于$$\sum_{i=x1}^{x2}\sum_{j=y1}^{y2} C_{x-i+x-j}^{x-i}$$

用二维前缀和的方法容斥一下,变成了求(顺便化简)$$\sum_{i=0}^{a}\sum_{j=0}^{b} C_{i+j}^{i}=C_{a+b+1}^{a+1}-1$$
复杂度变成了$O(N^2)$
然后发现那个化简完的组合数其实相当于$s$到一个固定的点(不随$s$改变)的方案数,相当于固定了起点,可以用同样的方法固定终点。
现在每条起点到终点的路径都有一个权值,相当于经过的$B$中的点的个数,答案就是所有路径权值和。
再把$B$容斥一下,让矩形的左上角为起点,这样就可以枚举走出矩形后的第一个点求权值和了。
复杂度$O(N*64)$

#include<cstdio>
#include<iostream>
#define ll long long
#define N 2000010
using namespace std;
const int p = 1000000007;
int jie[N],ni[N];
const int inf = 2000005;
int c(int m,int n)
{
return 1LL*jie[n]*ni[m]%p*ni[n-m]%p;
}
ll ans;
int ss(int x1,int y1,int x2,int y2,int x3,int y3)
{
int as=0;
for(int i=y1;i<=y2;i++)
{
(as+=1LL*c(x3-x2-1,x3-x2-1+y3-i)*c(x2-x1,x2-x1+i-y1)%p*(x2-x1+1+i-y1)%p)%=p;
}
for(int i=x1;i<=x2;i++)
{
(as+=1LL*c(y3-y2-1,y3-y2-1+x3-i)*c(y2-y1,y2-y1+i-x1)%p*(y2-y1+1+i-x1)%p)%=p;
}
return as;
}
int x1,x2,x3,x4,x5,x6;
int y1,y2,y3,y4,y5,y6;
int calc(int a1,int b1,int a2,int b2)
{
int as=0;
as+=ss(a1,b1,x4,y4,a2,b2);
as+=ss(a1,b1,x3-1,y3-1,a2,b2);as%=p;
as-=ss(a1,b1,x3-1,y4,a2,b2);
as-=ss(a1,b1,x4,y3-1,a2,b2);
return (as%p+p)%p;
}
int solve(int x,int y)
{
int as=0;
as+=calc(x,y,x6+1,y6+1);as+=calc(x,y,x5,y5);as%=p;
as-=calc(x,y,x6+1,y5);as-=calc(x,y,x5,y6+1);
return (as%p+p)%p;
}
int main()
{
jie[0]=ni[0]=ni[1]=1;
for(int i=1;i<=inf;i++)jie[i]=1LL*jie[i-1]*i%p;
for(int i=2;i<=inf;i++)ni[i]=1LL*(p-p/i)*ni[p%i]%p;
for(int i=2;i<=inf;i++)ni[i]=1LL*ni[i-1]*ni[i]%p;
scanf("%d%d%d%d%d%d",&x1,&x2,&x3,&x4,&x5,&x6);
scanf("%d%d%d%d%d%d",&y1,&y2,&y3,&y4,&y5,&y6);
ans+=solve(x1-1,y1-1);
ans+=solve(x2,y2);
ans-=solve(x1-1,y2);
ans-=solve(x2,y1-1);
ans=(ans%p+p)%p;
printf("%lld\n",ans);
return 0;
}

  

AtCoder Grand Contest 018 E Sightseeing Plan的更多相关文章

  1. AtCoder Grand Contest 018 D - Tree and Hamilton Path

    题目传送门:https://agc018.contest.atcoder.jp/tasks/agc018_d 题目大意: 给定一棵\(N\)个点的带权树,求最长哈密顿路径(不重不漏经过每个点一次,两点 ...

  2. AtCoder Grand Contest 018 A

    A - Getting Difference Time limit時間制限 : 2sec / Memory limitメモリ制限 : 256MB 配点 : 300 点 問題文 箱に N 個のボールが入 ...

  3. 【贪心】【堆】AtCoder Grand Contest 018 C - Coins

    只有两维的时候,我们显然要按照Ai-Bi排序,然后贪心选取. 现在,也将人按照Ai-Bi从小到大排序,一定存在一个整数K,左侧的K个人中,一定有Y个人取银币,K-Y个人取铜币: 右侧的X+Y+Z-K个 ...

  4. 【贪心】AtCoder Grand Contest 018 B - Sports Festival

    假设我们一开始选取所有的运动项目,然后每一轮将当前选择人数最多的运动项目从我们当前的项目集合中删除,尝试更新答案.容易发现只有这样答案才可能变优,如果不动当前选取人数最多的项目,答案就不可能变优. 我 ...

  5. 【GCD】AtCoder Grand Contest 018 A - Getting Difference

    从大到小排序,相邻两项作差,求gcd,如果K是gcd的倍数并且K<=max{a(i)},必然有解,否则无解. 可以自己手画画证明. #include<cstdio> #include ...

  6. AtCoder Grand Contest 018 A - Getting Difference

    A - Getting Difference Time limit : 2sec / Memory limit : 256MB Score : 300 points Problem Statement ...

  7. AtCoder Grand Contest 018题解

    传送门 \(A\) 根据裴蜀定理显然要\(k|\gcd(a_1,...,a_n)\),顺便注意不能造出大于\(\max(a_1,...,a_n)\)的数 int n,g,k,x,mx; int mai ...

  8. AtCoder Grand Contest 012

    AtCoder Grand Contest 012 A - AtCoder Group Contest 翻译 有\(3n\)个人,每一个人有一个强大值(看我的假翻译),每三个人可以分成一组,一组的强大 ...

  9. AtCoder Grand Contest 011

    AtCoder Grand Contest 011 upd:这篇咕了好久,前面几题是三周以前写的... AtCoder Grand Contest 011 A - Airport Bus 翻译 有\( ...

随机推荐

  1. 免费的 Vue.js 入门与进阶视频教程

    这是我免费发布的高质量超清「Vue.js 入门与进阶视频教程」. 全网最好的.免费的 Vue.js 视频教程,课程基于 Vue.js 2.0,由浅入深,最后结合实际的项目进行了最棒的技术点讲解,此课程 ...

  2. Mysql读写分离方案-Amoeba环境部署记录

    Mysql的读写分离可以使用MySQL Proxy,也可以使用Amoeba.Amoeba(变形虫)项目是一个类似MySQL Proxy的分布式数据库中间代理层软件,是由陈思儒开发的一个开源的java项 ...

  3. svn代码发版的脚本分享

    背景:开发将其代码放到svn里面,如何将修改后存放到svn里的代码发布到线上?简单做法:写个shell脚本,用于代码发版.比如开发的代码存放svn的路径是:svn://112.168.19.120/h ...

  4. Gerrit日常维护记录

    Gerrit代码审核工具是个好东西,尤其是在和Gitlab和Jenkins对接后,在代码控制方面有着无与伦比的优势. 在公司线上部署了一套Gerrit系统,在日常运维中,使用了很多gerrit命令,在 ...

  5. Wannafly挑战赛25 A.因子

    传送门 [https://www.nowcoder.com/acm/contest/197/A] 题意 给你n,m,让你求n!里有多少个m 分析 看这个你就懂了 [https://blog.csdn. ...

  6. Map获取key值

    有两种方法 public static void test4(){ Map<String, Object> map = new HashMap<>(); map.put(&qu ...

  7. Linux内核分析作业第八周

    进程的切换和系统的一般执行过程 一.进程调度的时机 中断处理过程(包括时钟中断.I/O中断.系统调用和异常)中,直接调用schedule(),或者返回用户态时根据need_resched标记调用sch ...

  8. chrome启用flash不询问

    69版本之后 打开 chrome://flags/#enable-ephemeral-flash-permission 把它从Default改为Disabled 重新打开Chrome,进入 chrom ...

  9. mxnet,theano与torch的简单比较

    这篇文章我想来比较一下Theano和mxnet,Torch(Torch基本没用过,所以只能说一些直观的感觉).我主要从以下几个方面来计较它们: 1.学习框架的成本,接口设计等易用性方面. 三个框架的学 ...

  10. python学习笔记八——字典的方法

    4.3.3 字典的方法 字典的常用方法可以极大地提高编程效率.keys()和values()分别返回字典的key列表和value列表.例: dict={"a":"appl ...