题意:

给定三个矩形,选定三个点,答案加上第一个点出发经过第二个点在第三个点结束的方案数,只能往右或往下走。

折腾了我半个多下午的题。

设三个矩形为$A,B,C$
一个思路是枚举$B$的那个点$s(x,y)$,求出$s$到$A$中所有点的方案数的和乘上$x$到$B$中所有点的方案数的和,复杂度爆炸。

$s$到$A$中所有点的方案数的和等于$$\sum_{i=x1}^{x2}\sum_{j=y1}^{y2} C_{x-i+x-j}^{x-i}$$

用二维前缀和的方法容斥一下,变成了求(顺便化简)$$\sum_{i=0}^{a}\sum_{j=0}^{b} C_{i+j}^{i}=C_{a+b+1}^{a+1}-1$$
复杂度变成了$O(N^2)$
然后发现那个化简完的组合数其实相当于$s$到一个固定的点(不随$s$改变)的方案数,相当于固定了起点,可以用同样的方法固定终点。
现在每条起点到终点的路径都有一个权值,相当于经过的$B$中的点的个数,答案就是所有路径权值和。
再把$B$容斥一下,让矩形的左上角为起点,这样就可以枚举走出矩形后的第一个点求权值和了。
复杂度$O(N*64)$

#include<cstdio>
#include<iostream>
#define ll long long
#define N 2000010
using namespace std;
const int p = 1000000007;
int jie[N],ni[N];
const int inf = 2000005;
int c(int m,int n)
{
return 1LL*jie[n]*ni[m]%p*ni[n-m]%p;
}
ll ans;
int ss(int x1,int y1,int x2,int y2,int x3,int y3)
{
int as=0;
for(int i=y1;i<=y2;i++)
{
(as+=1LL*c(x3-x2-1,x3-x2-1+y3-i)*c(x2-x1,x2-x1+i-y1)%p*(x2-x1+1+i-y1)%p)%=p;
}
for(int i=x1;i<=x2;i++)
{
(as+=1LL*c(y3-y2-1,y3-y2-1+x3-i)*c(y2-y1,y2-y1+i-x1)%p*(y2-y1+1+i-x1)%p)%=p;
}
return as;
}
int x1,x2,x3,x4,x5,x6;
int y1,y2,y3,y4,y5,y6;
int calc(int a1,int b1,int a2,int b2)
{
int as=0;
as+=ss(a1,b1,x4,y4,a2,b2);
as+=ss(a1,b1,x3-1,y3-1,a2,b2);as%=p;
as-=ss(a1,b1,x3-1,y4,a2,b2);
as-=ss(a1,b1,x4,y3-1,a2,b2);
return (as%p+p)%p;
}
int solve(int x,int y)
{
int as=0;
as+=calc(x,y,x6+1,y6+1);as+=calc(x,y,x5,y5);as%=p;
as-=calc(x,y,x6+1,y5);as-=calc(x,y,x5,y6+1);
return (as%p+p)%p;
}
int main()
{
jie[0]=ni[0]=ni[1]=1;
for(int i=1;i<=inf;i++)jie[i]=1LL*jie[i-1]*i%p;
for(int i=2;i<=inf;i++)ni[i]=1LL*(p-p/i)*ni[p%i]%p;
for(int i=2;i<=inf;i++)ni[i]=1LL*ni[i-1]*ni[i]%p;
scanf("%d%d%d%d%d%d",&x1,&x2,&x3,&x4,&x5,&x6);
scanf("%d%d%d%d%d%d",&y1,&y2,&y3,&y4,&y5,&y6);
ans+=solve(x1-1,y1-1);
ans+=solve(x2,y2);
ans-=solve(x1-1,y2);
ans-=solve(x2,y1-1);
ans=(ans%p+p)%p;
printf("%lld\n",ans);
return 0;
}

  

AtCoder Grand Contest 018 E Sightseeing Plan的更多相关文章

  1. AtCoder Grand Contest 018 D - Tree and Hamilton Path

    题目传送门:https://agc018.contest.atcoder.jp/tasks/agc018_d 题目大意: 给定一棵\(N\)个点的带权树,求最长哈密顿路径(不重不漏经过每个点一次,两点 ...

  2. AtCoder Grand Contest 018 A

    A - Getting Difference Time limit時間制限 : 2sec / Memory limitメモリ制限 : 256MB 配点 : 300 点 問題文 箱に N 個のボールが入 ...

  3. 【贪心】【堆】AtCoder Grand Contest 018 C - Coins

    只有两维的时候,我们显然要按照Ai-Bi排序,然后贪心选取. 现在,也将人按照Ai-Bi从小到大排序,一定存在一个整数K,左侧的K个人中,一定有Y个人取银币,K-Y个人取铜币: 右侧的X+Y+Z-K个 ...

  4. 【贪心】AtCoder Grand Contest 018 B - Sports Festival

    假设我们一开始选取所有的运动项目,然后每一轮将当前选择人数最多的运动项目从我们当前的项目集合中删除,尝试更新答案.容易发现只有这样答案才可能变优,如果不动当前选取人数最多的项目,答案就不可能变优. 我 ...

  5. 【GCD】AtCoder Grand Contest 018 A - Getting Difference

    从大到小排序,相邻两项作差,求gcd,如果K是gcd的倍数并且K<=max{a(i)},必然有解,否则无解. 可以自己手画画证明. #include<cstdio> #include ...

  6. AtCoder Grand Contest 018 A - Getting Difference

    A - Getting Difference Time limit : 2sec / Memory limit : 256MB Score : 300 points Problem Statement ...

  7. AtCoder Grand Contest 018题解

    传送门 \(A\) 根据裴蜀定理显然要\(k|\gcd(a_1,...,a_n)\),顺便注意不能造出大于\(\max(a_1,...,a_n)\)的数 int n,g,k,x,mx; int mai ...

  8. AtCoder Grand Contest 012

    AtCoder Grand Contest 012 A - AtCoder Group Contest 翻译 有\(3n\)个人,每一个人有一个强大值(看我的假翻译),每三个人可以分成一组,一组的强大 ...

  9. AtCoder Grand Contest 011

    AtCoder Grand Contest 011 upd:这篇咕了好久,前面几题是三周以前写的... AtCoder Grand Contest 011 A - Airport Bus 翻译 有\( ...

随机推荐

  1. LINUX内核分析第七周学习总结

    LINUX内核分析第七周学习总结 标签(空格分隔): 20135328陈都 陈都 原创作品转载请注明出处 <Linux内核分析>MOOC课程 http://mooc.study.163.c ...

  2. 《linux内核设计与分析》内核模块编程

    内核模块编程 一.准备工作 虚拟机:VMware Workstation 12操作系统:ubuntu当前内核版本:linux-headers-4.4.0-22-generic 二.有关于内核模块的知识 ...

  3. jsp中获取不到servlet的cookie

    今天做登陆,发现jsp中使用document.cookie获取不到servlet生成的cookie,我们可以在浏览器的cookie文件夹中发现,servlet中生成的cookie和jsp中的生成的路径 ...

  4. Spring IOP 面向切面编程

    Spring IOP  面向切面编程 AOP操作术语 Joinpoint(连接点):所谓连接点是指那些被拦截到的点.在spring中,这些点指的是方法,因为spring只支持方法类型的连接点.(类里面 ...

  5. C语言删除指定文件

    C语言的文件操作想必大家都多多少少的有所了解,今天为大家献上删除文件的操作方法.这里我们要用到的是remove(const T& x);x使用代表文件路径及文件名的字符常量来确定需要删除的对象 ...

  6. 服务器RAID设置以及简单理解

    备注: 适用于测试环境,生产环境暂时未验证 1. RAID种类 最高性能的RAID0 完全拆分所有的IO 不进行校验 但是单盘损坏, 数据完全丢失 最高损耗的RAID1 损失一半的存储容量, 做镜像, ...

  7. jvm学习二:类加载器

    前一节详细的聊了一下类的加载过程,本节聊一聊类的加载工具,类加载器  ---  ClassLoader 本想自己写的,查资料的时候查到一篇大神的文章,写的十分详细 大家直接过去看吧http://blo ...

  8. Java之byte、char和String类型相互转换

    package basictype; /** * byte.char和String类型相互转换 */ public class CHJavaType { public static void main ...

  9. matplotlib之直接保存图片

    自动保存图表:pyplot.savefig('D:\\pic.png'),替代了 pyplot.show(). # 使用matplotlib.pyplot.scatter绘制散点 import mat ...

  10. string.PadLeft & string.PadRight

    比如我想让他的长度是20个字符有很多字符串如string a = "123",只有3个字符怎么让他们在打印或显示在textBox上的时候不够的长度用空格补齐呢? string.Pa ...