[Cqoi2014]数三角形——组合数
Description:
给定一个nxm的网格,请计算三点都在格点上的三角形共有多少个。下图为4x4的网格上的一个三角形。
注意三角形的三点不能共线。
Hint:
1<=m,n<=1000
Solution:
直接算三角形肯定算死。
所以,先考虑所有的可能三角形。再减去不合法的三点共线的情况。
所有三角形:C((n+1)*(m+1),3)
不合法的情况怎么处理??
开始的想法:
1.找所有的两端在坐标轴上的直线,算出来整点数:gcd(x,y)+1;再算上下,左右的直线。
但是发现可能有的不合法直线不过边框的整点!!bug
2.考虑直线的方程:ax+by+c=0
a,b,c是常整数。并且都在1~n(m)的范围内。
相当于求x,y的非负整数解的个数。(exgcd)
但是待定系数n^4,枚举系数n^3都不行。bug
正解:
优化一下
发现找直线非常复杂。
如果我们找线段呢?并且保证线段的两端都在整点上?相当于把直线根据整点拆开了
(a,b)(c,d)的线段中间的整点有gcd(abs(c-a),abs(d-b))-1个方案。
枚举线段减去中间放点的方案,这样还是n^4
发现,许多的线段本质上是一致的,只是平移了。
所以,我们只需要枚举所有的(0,0)(x,y),就可以了、。
平移的方案就是(n+1-x)*(m+1-y)相当于画出了一个矩形。
对于不是在坐标轴上的点,我们还要乘2,相当于上下一个对称情况。
Code:
#include<cstdio>
#define LL long long
int gcd[][];
int n,m;
LL t,ans;
inline int getgcd(int a,int b)
{
if (gcd[a][b])return gcd[a][b];
if (!a)return gcd[a][b]=b;
if (!b)return gcd[a][b]=a;
return gcd[a][b]=getgcd(b,a%b);
}
inline void calc()
{
for(int i=;i<=m;i++)gcd[][i]=i;
for(int i=;i<=n;i++)gcd[i][]=i;
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
getgcd(i,j);
}
int main()
{
scanf("%d%d",&n,&m);
calc();
t=(n+)*(m+);
ans=t*(t-)*(t-)/;
for (int i=;i<=n;i++)
for (int j=;j<=m;j++)
if (i||j)
{
if (!i||!j)ans-=(LL)(gcd[i][j]-)*(n-i+)*(m-j+);
else ans-=(LL)*(gcd[i][j]-)*(n-i+)*(m-j+);
}
printf("%lld",ans);
}
[Cqoi2014]数三角形——组合数的更多相关文章
- BZOJ 3505: [Cqoi2014]数三角形( 组合数 )
先n++, m++ 显然答案就是C(3, n*m) - m*C(3, n) - n*C(3, m) - cnt. 表示在全部点中选出3个的方案减去不合法的, 同一行/列的不合法方案很好求, 对角线的不 ...
- 【BZOJ3505】[Cqoi2014]数三角形 组合数
[BZOJ3505][Cqoi2014]数三角形 Description 给定一个nxm的网格,请计算三点都在格点上的三角形共有多少个.下图为4x4的网格上的一个三角形. 注意三角形的三点不能共线. ...
- [CQOI2014]数三角形 组合数 + 容斥 + gcd
推导过程 : 组合数+容斥原理+gcd 正确做法是暴力的一种优化,ans=所有情况 - 平行坐标轴的三点共线 - 斜线三点共线 如果快速求斜线三点共线: 首先要知道一个结论,对于点(a,b) (x,y ...
- bzoj3505 [Cqoi2014]数三角形——组合数+容斥
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3505 好题啊好题...好像还曾经出现在什么智力测试卷中来着...当时不会现在还是无法自己推出 ...
- [CQOI2014]数三角形 题解(组合数学+容斥)
[CQOI2014]数三角形 题解(数论+容斥) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/1328780 链接题目地址:洛谷P3166 BZOJ 350 ...
- BZOJ 3505: [Cqoi2014]数三角形 数学
3505: [Cqoi2014]数三角形 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pr ...
- Bzoj 3505: [Cqoi2014]数三角形 数论
3505: [Cqoi2014]数三角形 Time Limits: 1000 ms Memory Limits: 524288 KB Detailed Limits Description
- bzoj 3505: [Cqoi2014]数三角形 组合数学
3505: [Cqoi2014]数三角形 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 478 Solved: 293[Submit][Status ...
- 3505: [Cqoi2014]数三角形
3505: [Cqoi2014]数三角形 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1324 Solved: 807[Submit][Statu ...
随机推荐
- 懒人小工具:T4生成实体类Model,Insert,Select,Delete以及导出Excel的方法
由于最近公司在用webform开发ERP,用到大量重复机械的代码,之前写了篇文章,懒人小工具:自动生成Model,Insert,Select,Delete以及导出Excel的方法,但是有人觉得这种方法 ...
- win10系统安装web3js的正确方法(2)
信渤网络科技是一家基于互联网信息服务的区块链技术公司,专业提供区块链技术培训,智能合约定制开发,文字图片数据存证上链等服务,为相关企业提供区块链应用落地项目的技术方案 崇尚代码即法律,做一个智能合约开 ...
- Centos 6.9下部署Oracle 11G数据库环境的操作记录
操作系统:Centos6.9(64Bit)Oracle:11g .11.2.0.4.0版本Ip地址:172.16.220.139 废话不多说了,下面记录安装过程:1)安装桌面环境 [root@vm01 ...
- Echo团队便利记事本项目终审报告
一.团队成员简介 http://www.cnblogs.com/echo-buaa/p/3991968.html 二.团队项目的目标,预期的典型用户,预期的功能描述,预期的用户数量在哪里? 项目的目标 ...
- [2017BUAA软工]第一次个人项目 数独的生成与求解
零.Github链接 https://github.com/xxr5566833/sudo 一.PSP表格 PSP2.1 Personal Software Process Stages 预估耗时(分 ...
- Spring MVC (Java),强制页面不缓存
response.setDateHeader("Expires",0); response.setHeader("Buffer","Tr ...
- CSS响应式网站开发
<html> <head> //当设备屏幕最大宽度小于1024px时加载如下CSS内容 @media screen and (max-width: 1024px){ ...
- 兼容IE-FireFox-Chrome的背景音乐播放
以music目录下的kn.mp3文件为例: <bgsound src="music/kn.mp3" loop="-1"/> <audio sr ...
- bat脚本的写法
当你每次都要输入相同的命令时,可以把这么多命令存为一个批处理,从此以后,只要运行这个批处理,就相当于打了几行.几十行命令.下面以Nginx服务的停止脚本为例写一个bat批处理文件: 1.新建nginx ...
- VMware安装win7提示 operating system not found
在虚拟机上安装win7时,进度条读完,重启后提示operating system not found,可能原因是在使用分区工具格式化时没有把C盘设置为主分区并激活. 解决办法: 进入PE或者使用分区工 ...