problem1 link

最优选择一定是在$2n$个端点中选出两个。

problem2 link

分开考虑每个区间。设所有区间的左端点的最大值为$lc$,所有区间的右端点的最小值为$rc$.对于某个区间$L$,其实就是找最少的区间(包括$L$)能够完全覆盖区间$[lc,rc]$.

设$L$的左右端点为$L_{1},L_{2}$。考虑从$L_{1}$向左扩展,每次扩展一定是找一个区间$p$满足$p_{2}\geq L_{1}$且使得$p_{1}$最小。右端点向右扩展类似。

problem3 link

对于后手来说,它一定是每次只放置一个障碍格子在先手目前的位置。否则,如果放置了太多,那么先手就容易决策出向左还是向右比较好。

对于先手来说,假设目前先手在$(r,c)$,那么如果$(r,c)$和$(r+1,c)$之间没有障碍,且轮到先手,应该直接跳到$(r+1,c)$,否则,那么由后手的策略来看,此时已经有的障碍一定是一个包含$(r,c)$的区间,此时先手可以尝试向左或者向右运动到障碍区间外一个格子。

这样就可以用$(r,c,left,right,tag)$来表示一个状态来进行动态规划。$(r,c)$表示先手目前的位置,$(left, right)$表示目前障碍的区间,$tag$指示目前是先手还是后手。

code for problem1

#include <vector>

class EelAndRabbit {
public:
int getmax(std::vector<int> &l, std::vector<int> t) {
const int n = static_cast<int>(l.size());
int ans = 0;
for (int i = 0; i < n; ++i) {
for (int j = 0; j < 2; ++j) {
int p1 = j == 0 ? -t[i] : -t[i] - l[i];
for (int k = 0; k < n; ++k) {
for (int r = 0; r < 2; ++r) {
int p2 = r == 0 ? -t[k] : -t[k] - l[k];
if (p1 != p2) {
int num = 0;
long long mask = 0;
for (int x = 0; x < n; ++x) {
if ((-t[x] - l[x] <= p1 && p1 <= -t[x]) ||
(-t[x] - l[x] <= p2 && p2 <= -t[x])) {
if ((mask & (1ll << x)) == 0) {
++num;
mask |= 1ll << x;
}
}
}
ans = std::max(ans, num);
}
}
}
}
}
return ans;
}
};

code for problem2

#include <algorithm>
#include <string>
#include <vector> constexpr int N = 2500;
constexpr int M = 10000; int s[N], t[N];
int back[M], next[M];
int back_cost[M], next_cost[M];
int sort_idx[N]; class ShoutterDiv1 {
public:
int count(const std::vector<std::string>& s1000,
const std::vector<std::string>& s100,
const std::vector<std::string>& s10,
const std::vector<std::string>& s1,
const std::vector<std::string>& t1000,
const std::vector<std::string>& t100,
const std::vector<std::string>& t10,
const std::vector<std::string>& t1) {
int n = 0;
for (const auto& e : s1000) {
n += static_cast<int>(e.size());
}
for (int i = 0; i < n; ++i) {
s[i] = t[i] = 0;
sort_idx[i] = i;
}
for (int i = 0; i < M; ++i) {
back[i] = next[i] = i;
}
Parse(s1000, s, 1000);
Parse(s100, s, 100);
Parse(s10, s, 10);
Parse(s1, s, 1);
Parse(t1000, t, 1000);
Parse(t100, t, 100);
Parse(t10, t, 10);
Parse(t1, t, 1); int c_left = t[0];
int c_right = s[0];
for (int i = 0; i < n; ++i) {
back[t[i]] = std::min(back[t[i]], s[i]);
next[s[i]] = std::max(next[s[i]], t[i]);
c_left = std::min(c_left, t[i]);
c_right = std::max(c_right, s[i]);
}
for (int i = M - 2; i >= 0; --i) {
back[i] = std::min(back[i], back[i + 1]);
}
for (int i = 1; i < M; ++i) {
next[i] = std::max(next[i], next[i - 1]);
}
for (int i = 0; i < M; ++i) {
if (i <= c_left) {
back_cost[i] = 0;
} else if (i == back[i]) {
back_cost[i] = -1;
} else {
if (back_cost[back[i]] == -1) {
back_cost[i] = -1;
} else {
back_cost[i] = 1 + back_cost[back[i]];
}
}
}
for (int i = M - 1; i >= 0; --i) {
if (i >= c_right) {
next_cost[i] = 0;
} else if (i == next[i]) {
next_cost[i] = -1;
} else {
if (next_cost[next[i]] == -1) {
next_cost[i] = -1;
} else {
next_cost[i] = 1 + next_cost[next[i]];
}
}
}
auto Cost = [&](int left, int right) {
if (back_cost[left] == -1 || next_cost[right] == -1) {
return -1;
}
return back_cost[left] + next_cost[right];
}; std::sort(sort_idx, sort_idx + n, [&](int x, int y) {
return s[x] < s[y] || (s[x] == s[y] && t[x] < t[y]);
}); int result = 0;
for (int i = 0; i < n; ++i) {
int tmp = Cost(s[sort_idx[i]], t[sort_idx[i]]);
for (int j = 0; j < N && s[sort_idx[j]] <= s[sort_idx[i]]; ++j) {
if (t[sort_idx[i]] <= t[sort_idx[j]]) {
int val = Cost(s[sort_idx[j]], t[sort_idx[j]]);
if (val != -1 && (tmp == -1 || tmp > 1 + val)) {
tmp = 1 + val;
}
}
}
if (tmp == -1) {
return -1;
}
result += tmp;
}
return result;
} private:
void Parse(const std::vector<std::string>& d, int* data, int base) {
int idx = 0;
for (size_t i = 0; i < d.size(); ++i) {
for (size_t j = 0; j < d[i].size(); ++j) {
data[idx++] += (d[i][j] - '0') * base;
}
}
}
};

code for problem3

#include <cstring>
#include <limits>
#include <string>
#include <vector> #include <iostream> constexpr int N = 50;
constexpr int kEachUseBit = 16;
constexpr int kRabbitTagBit = 31;
constexpr int kEelTagBit = 15;
constexpr int kMask = (1 << (kEachUseBit - 1)) - 1; using TType = unsigned int; TType rabbit_eel[N][N][N][N + 1];
int cost[N][N];
int h, w; class WallGameDiv1 {
public:
int play(const std::vector<std::string> &costs) {
h = static_cast<int>(costs.size());
w = static_cast<int>(costs[0].size());
for (int i = 0; i < h; ++i) {
cost[i][0] = costs[i][0] - '0';
for (int j = 1; j < w; ++j) {
cost[i][j] = cost[i][j - 1] + costs[i][j] - '0';
}
} memset(rabbit_eel, 0, sizeof(rabbit_eel));
// Iterator each row to avoid more depths of recursion.
for (int i = h - 1; i >= 0; --i) {
for (int j = 0; j < w; ++j) {
Eel(i, j, j, j);
}
}
int result = std::numeric_limits<int>::max();
for (int i = 0; i < w; ++i) {
result = std::min(result, Cost(0, i, i) + Eel(0, i, i, i));
}
return result;
} private:
bool Computed(const TType &val, bool is_rabbit) {
if (is_rabbit) {
return (val & (1u << kRabbitTagBit)) != 0;
} else {
return (val & (1u << kEelTagBit)) != 0;
}
} int GetCost(const TType &val, bool is_rabbit) {
if (!Computed(val, is_rabbit)) {
return -1;
}
if (is_rabbit) {
return static_cast<int>((val >> kEachUseBit) & kMask);
} else {
return static_cast<int>(val & kMask);
}
} int SetCost(TType &val, bool is_rabbit, int cost) {
if (is_rabbit) {
val |= (static_cast<TType>(cost)) << kEachUseBit;
val |= 1u << kRabbitTagBit;
} else {
val |= cost;
val |= 1u << kEelTagBit;
}
return cost;
} int Eel(int row, int col, int left, int right) {
TType &val = rabbit_eel[row][col][left][right];
int result = GetCost(val, false);
if (result != -1) {
return result;
}
if (row == h - 1) {
return SetCost(val, false, 0);
}
result = Rabbit(row, col, left, right); if (right - left < w - 1) {
result = std::max(result, Rabbit(row, col, std::min(col, left),
std::max(col + 1, right)));
} return SetCost(val, false, result);
} int Rabbit(int row, int col, int left, int right) {
TType &val = rabbit_eel[row][col][left][right];
int result = GetCost(val, true);
if (result != -1) {
return result;
}
if ((left <= col) && (col < right)) {
result = std::numeric_limits<int>::max();
if (left > 0) {
result = Cost(row, left - 1, col - 1) + Eel(row, left - 1, left, right);
}
if (right < w) {
result = std::min(
result, Cost(row, col + 1, right) + Eel(row, right, left, right));
}
} else {
result = Cost(row + 1, col, col) + Eel(row + 1, col, col, col);
}
return SetCost(val, true, result);
} int Cost(int row, int left, int right) {
if (left <= right) {
if (left == 0) {
return cost[row][right];
}
return cost[row][right] - cost[row][left - 1];
}
return 0;
}
};

topcoder srm 580 div1的更多相关文章

  1. Topcoder SRM 643 Div1 250<peter_pan>

    Topcoder SRM 643 Div1 250 Problem 给一个整数N,再给一个vector<long long>v; N可以表示成若干个素数的乘积,N=p0*p1*p2*... ...

  2. Topcoder Srm 726 Div1 Hard

    Topcoder Srm 726 Div1 Hard 解题思路: 问题可以看做一个二分图,左边一个点向右边一段区间连边,匹配了左边一个点就能获得对应的权值,最大化所得到的权值的和. 然后可以证明一个结 ...

  3. topcoder srm 714 div1

    problem1 link 倒着想.每次添加一个右括号再添加一个左括号,直到还原.那么每次的右括号的选择范围为当前左括号后面的右括号减去后面已经使用的右括号. problem2 link 令$h(x) ...

  4. topcoder srm 738 div1 FindThePerfectTriangle(枚举)

    Problem Statement      You are given the ints perimeter and area. Your task is to find a triangle wi ...

  5. Topcoder SRM 602 div1题解

    打卡- Easy(250pts): 题目大意:rating2200及以上和2200以下的颜色是不一样的(我就是属于那个颜色比较菜的),有个人初始rating为X,然后每一场比赛他的rating如果增加 ...

  6. Topcoder SRM 627 div1 HappyLettersDiv1 : 字符串

    Problem Statement      The Happy Letter game is played as follows: At the beginning, several players ...

  7. Topcoder SRM 584 DIV1 600

    思路太繁琐了 ,实在不想解释了 代码: #include<iostream> #include<cstdio> #include<string> #include& ...

  8. TopCoder SRM 605 DIV1

    604的题解还没有写出来呢.先上605的. 代码去practice房间找. 说思路. A: 贪心,对于每个类型的正值求和,如果没有正值就取最大值,按着求出的值排序,枚举选多少个类型. B: 很明显是d ...

  9. topcoder srm 575 div1

    problem1 link 如果$k$是先手必胜那么$f(k)=1$否则$f(k)=0$ 通过对前面小的数字的计算可以发现:(1)$f(2k+1)=0$,(2)$f(2^{2k+1})=0$,(3)其 ...

随机推荐

  1. css3奇数偶数的伪属性

    <style> /*奇数*/ ul li:nth-child(odd){ background-color: green; } /*偶数*/ ul li:nth-child(even){ ...

  2. 【转】- 从FM推演各深度CTR预估模型(附代码)

    从FM推演各深度CTR预估模型(附代码) 2018年07月13日 15:04:34 阅读数:584 作者: 龙心尘 && 寒小阳 时间:2018年7月 出处: 龙心尘 寒小阳

  3. Synctoy2.1使用定时任务0X1

    环境描述:公司需要在windows上面使用双向文件同步,目前发现SyncToy可以实现这个功能,但是在Windows 2012上面 ,添加定时任务的时候,执行状态总是0x1,定时任务配置确认多次,肯定 ...

  4. java中基本类型double和对象类型Double

    Double.valueOf(str)把String转化成Double类型的对象比如Stirng str="1.0";那么Double.valueOf(str)等价于new Dou ...

  5. Ps去除背景

    http://www.16xx8.com/photoshop/jiaocheng/26905.html

  6. Eclipse 00: 安装教程 + 汉化 + 简单创建java项目

    Java 安装教程(Eclipse) 目录: 要安装Java 要分两个步骤: 1.JDK的安装 2.Eclipse的安装 3.Eclipse汉化 4.Eclipse创建简单java项目 1和2的顺序不 ...

  7. [ovs] openvswitch 从源码编译安装

    文档:https://docs.openvswitch.org/en/latest/intro/install/general/ 1. yum install autoconf automake li ...

  8. [学习] 从 函数式编程 到 lambda演算 到 函数的本质 到 组合子逻辑

    函数式编程 阮一峰 <函数式编程初探>,阮一峰是<黑客与画家>的译者. wiki <函数编程语言> 一本好书,<计算机程序的构造与解释>有讲到schem ...

  9. linux下yum安装及配置

    1 2 3 4 分步阅读 公司使用的是linux搭建服务器,linux安装软件能够使用yum安装依赖包是一件非常简单而幸福的事情,所以这里简单介绍一下linux安装yum源流程和操作. 工具/原料 电 ...

  10. IIS支持apk文件

    随着智能手机的普及,越来越多的人使用手机上网,很多网站也应手机上网的需要推出了网站客户端,.apk文件就是安卓(Android)的应用程序后缀名,默认情况下,使用IIS作为Web服务器的无法下载此文件 ...