BZOJ1041 HAOI2008圆上的整点(数论)
求x2+y2=r2的整数解个数,显然要化化式子。考虑求正整数解。
y2=r2-x2→y2=(r-x)(r+x)→(r-x)(r+x)为完全平方数→(r-x)(r+x)/d2为完全平方数,d=gcd(r-x,r+x)→(r-x)/d·(r+x)/d为完全平方数,gcd((r-x)/d,(r+x)/d)=1→(r-x)/d和(r+x)/d均为完全平方数→(r-x)/d+(r+x)/d=2r/d为整数,即d|2r
于是我们可以以√n的复杂度枚举d,然后枚举√(r-x)/d,检验一下是否满足之前推导中的条件即可,再加上坐标轴上和其余象限的答案。
这样的复杂度并不显然,不过感觉上明显低于线性,并且一个数的因数个数是有比较优秀的上界的:n1.066/ln(ln n)。http://vfleaking.blog.163.com/blog/static/174807634201341913040467/
还有O(分解质因数)的神仙做法,似乎将素数拓展到了复平面,并不可能懂。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define ll long long
int n,ans=;
ll m;
ll gcd(ll n,ll m){return m==?n:gcd(m,n%m);}
void solve(ll x)
{
if (x>=n) return;
for (int i=;i*i*x<=n;i++)
{
int a=i*i;
if (gcd(a,m/x-a)==&&((ll)sqrt(m/x-a))*((ll)sqrt(m/x-a))==m/x-a) ans++;
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj1041.in","r",stdin);
freopen("bzoj1041.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read();m=1ll*n<<;
for (ll i=;i*i<=m;i++)
if (m%i==)
{
solve(i);
if (i*i<m) solve(m/i);
}
cout<<(ans+<<);
return ;
}
BZOJ1041 HAOI2008圆上的整点(数论)的更多相关文章
- BZOJ1041:[HAOI2008]圆上的整点(数论)
Description 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. Input 只有一个正整数n,n<=2000 000 000 Output 整点个数 Samp ...
- bzoj千题计划127:bzoj1041: [HAOI2008]圆上的整点
http://www.lydsy.com/JudgeOnline/problem.php?id=1041 设 X>0 ,Y>0 X^2 + Y^2 = R^2 X^2 = R^2-Y^2 ...
- BZOJ1041 [HAOI2008]圆上的整点 【数学】
1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec Memory Limit: 162 MB Submit: 4631 Solved: 2087 [Submit][S ...
- 【bzoj1041】[HAOI2008]圆上的整点 数论
题目描述 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. 输入 只有一个正整数n,n<=2000 000 000 输出 整点个数 样例输入 4 样例输出 4 题解 数 ...
- [BZOJ1041] [HAOI2008] 圆上的整点 (数学)
Description 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. Input 只有一个正整数n,n<=2000 000 000 Output 整点个数 Samp ...
- [bzoj1041][HAOI2008]圆上的整点
我能想得出怎么做才奇怪好吗 题解:http://blog.csdn.net/csyzcyj/article/details/10044629 #include<iostream> #inc ...
- 【BZOJ1041】[HAOI2008]圆上的整点
[BZOJ1041][HAOI2008]圆上的整点 题面 bzoj 洛谷 题解 不妨设\(x>0,y>0\) \[ x^2+y^2=r^2\\ y^2=(x+r)(x-r) \] 设\(r ...
- 【BZOJ1041】圆上的整点(数论)
[BZOJ1041]圆上的整点(数论) 题面 BZOJ 洛谷 题解 好神仙的题目啊. 安利一个视频,大概是第\(7\)到\(19\)分钟的样子 因为要质因数分解,所以复习了一下\(Pollard\_r ...
- 2021.12.06 P2508 [HAOI2008]圆上的整点(数论+ π )
2021.12.06 P2508 [HAOI2008]圆上的整点(数论+ \(\pi\) ) https://www.luogu.com.cn/problem/P2508 题意: 求一个给定的圆 \( ...
随机推荐
- RabbitMq、ActiveMq、ZeroMq、kafka之间的比较
MQ框架非常之多,比较流行的有RabbitMq.ActiveMq.ZeroMq.kafka.这几种MQ到底应该选择哪个?要根据自己项目的业务场景和需求.下面我列出这些MQ之间的对比数据和资料. 第一部 ...
- 云主机被拿去挖矿,cpu暴涨,tcp连接突增
1.云主机被拿去挖矿,cpu暴涨,tcp连接突增 2.现象:top -c 3.然后我再查看pstree进程树 4.查找文件来源 ind / -name '*suppoie*' 5. 然后删除 sup ...
- 阅读Cortex-A53 Technical Reference Manual笔记
1. 前言 一颗芯片最主要的就是CPU核了,处理CPU Core之外,还存在很多其他IP,包括Graphical.Multimedia.Memory Controller.USB Controller ...
- LOJ2538 PKUWC2018 Slay the Spire DP
传送门 不想放题面了,咕咕咕咕咕 这个期望明明是用来吓人的,其实要算的就是所有方案的最多伤害的和. 首先可以知道的是,能出强化牌就出强化牌(当然最后要留一张攻击牌出出去),且数字尽量大 所以说在强化牌 ...
- mac安装CocoaPods遇到的问题及解决办法
(1)sudo gem install cocoapods Fetching: i18n-0.7.0.gem (100%) Successfully installed i18n-0.7.0 Fetc ...
- Luogu P1447 [NOI2010]能量采集
Preface 最近反演题做多了看什么都想反演.这道题由于数据弱,解法多种多样,这里简单分析一下. 首先转化下题目就是对于一个点\((x,y)\),所消耗的能量就是\(2(\gcd(x,y)-1)+1 ...
- [Spark][python]RDD的collect 作用是什么?
[Spark][Python]sortByKey 例子的继续 RDD的collect() 作用是什么? “[Spark][Python]sortByKey 例子”的继续 In [20]: mydata ...
- mybatis源码-解析配置文件(四)之配置文件Mapper解析
在 mybatis源码-解析配置文件(三)之配置文件Configuration解析 中, 讲解了 Configuration 是如何解析的. 其中, mappers作为configuration节点的 ...
- iptables限制连接数(如sftp) 以及 谨防CC/DDOS攻击的配置 ( connlimit模块)
之前在公司服务器上部署了sftp,用于上传业务系统的附件.后来由于程序连接问题,使的sftp连接数过多(最多时高达400多个sftp连接数),因为急需要对sftp的连接数做严格限制.操作记录如下: 启 ...
- 结构体内嵌比较函数bool operator < (const node &x) const {}
直接看别人的链接 [http://www.cnblogs.com/ZERO-/p/9347296.html]