Strange Way to Express Integers(中国剩余定理+不互质)
Strange Way to Express Integers
Time Limit:1000MS Memory Limit:131072KB 64bit IO Format:%I64d & %I64u
Description
Elina is reading a book written by Rujia Liu, which introduces a strange way to express non-negative integers. The way is described as following:
Choose k different positive integers a1, a2, …, ak. For some non-negative m, divide it by every ai (1 ≤ i ≤ k) to find the remainder ri. If a1, a2, …, ak are properly chosen, m can be determined, then the pairs (ai, ri) can be used to express m.
“It is easy to calculate the pairs from m, ” said Elina. “But how can I find m from the pairs?”
Since Elina is new to programming, this problem is too difficult for her. Can you help her?
Input
The input contains multiple test cases. Each test cases consists of some lines.
- Line 1: Contains the integer k.
- Lines 2 ~ k + 1: Each contains a pair of integers ai, ri (1 ≤ i ≤ k).
Output
Output the non-negative integer m on a separate line for each test case. If there are multiple possible values, output the smallest one. If there are no possible values, output -1.
Sample Input
2
8 7
11 9
Sample Output
31
Hint
All integers in the input and the output are non-negative and can be represented by 64-bit integral types.
题意:给你k组数。x%M[i]=A[i];
思路:中国剩余定理,扩展欧几里德
不会的可以参考:http://blog.csdn.net/u010579068/article/details/45422941
转载请注明出处:寻找&星空の孩子
题目链接:http://poj.org/problem?id=2891
#include<stdio.h>
#define LL __int64 void exgcd(LL a,LL b,LL& d,LL& x,LL& y)
{
if(!b){d=a;x=;y=;}
else
{
exgcd(b,a%b,d,y,x);
y-=x*(a/b);
}
}
LL gcd(LL a,LL b)
{
if(!b){return a;}
gcd(b,a%b);
} LL M[],A[]; LL China(int r)
{
LL dm,i,a,b,x,y,d;
LL c,c1,c2;
a=M[];
c1=A[];
for(i=; i<r; i++)
{
b=M[i];
c2=A[i];
exgcd(a,b,d,x,y);
c=c2-c1;
if(c%d) return -;//c一定是d的倍数,如果不是,则,肯定无解
dm=b/d;
x=((x*(c/d))%dm+dm)%dm;//保证x为最小正数//c/dm是余数,系数扩大余数被
c1=a*x+c1;
a=a*dm;
}
if(c1==)//余数为0,说明M[]是等比数列。且余数都为0
{
c1=;
for(i=;i<r;i++)
c1=c1*M[i]/gcd(c1,M[i]);
}
return c1;
}
int main()
{
int n; while(scanf("%d",&n)!=EOF)
{
for(int i=;i<n;i++)
{
scanf("%I64d%I64d",&M[i],&A[i]);
}
if(n==){ printf("%I64d\n",A[]);continue;}
LL ans=China(n);
printf("%I64d\n",ans); }
return ;
}
Strange Way to Express Integers(中国剩余定理+不互质)的更多相关文章
- poj 2981 Strange Way to Express Integers (中国剩余定理不互质)
http://poj.org/problem?id=2891 Strange Way to Express Integers Time Limit: 1000MS Memory Limit: 13 ...
- POJ 2891 Strange Way to Express Integers 中国剩余定理解法
一种不断迭代,求新的求余方程的方法运用中国剩余定理. 总的来说,假设对方程操作.和这个定理的数学思想运用的不多的话.是非常困难的. 參照了这个博客的程序写的: http://scturtle.is-p ...
- POJ 2891 Strange Way to Express Integers 中国剩余定理 数论 exgcd
http://poj.org/problem?id=2891 题意就是孙子算经里那个定理的基础描述不过换了数字和约束条件的个数…… https://blog.csdn.net/HownoneHe/ar ...
- POJ 2891 Strange Way to Express Integers(中国剩余定理)
题目链接 虽然我不懂... #include <cstdio> #include <cstring> #include <map> #include <cma ...
- POJ2891 Strange Way to Express Integers [中国剩余定理]
不互质情况的模板题 注意多组数据不要一发现不合法就退出 #include <iostream> #include <cstdio> #include <cstring&g ...
- POJ 1006 Biorhythms --中国剩余定理(互质的)
Biorhythms Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 103539 Accepted: 32012 Des ...
- Hello Kiki(中国剩余定理——不互质的情况)
Hello Kiki Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Su ...
- HDU 5768 Lucky7 容斥原理+中国剩余定理(互质)
分析: 因为满足任意一组pi和ai,即可使一个“幸运数”被“污染”,我们可以想到通过容斥来处理这个问题.当我们选定了一系列pi和ai后,题意转化为求[x,y]中被7整除余0,且被这一系列pi除余ai的 ...
- X问题(中国剩余定理+不互质版应用)hdu1573
X问题 Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
随机推荐
- [Solution] JZOJ3470 最短路
[Solution] JZOJ3470 最短路 题面 Description 给定一个n个点m条边的有向图,有k个标记点,要求从规定的起点按任意顺序经过所有标记点到达规定的终点,问最短的距离是多少. ...
- Spring Cloud之踩坑01 -- Eureka高可用配置
转载:https://blog.csdn.net/dear_Alice_moon/article/details/79373955 问题描述: 在进行Eureka高可用配置时,控制台一直出现“.... ...
- java基础-三元运算符
1.三元运算符的格式 /* 三元运算符 (条件表达式)?表达式1:表达式2; 如果条件为true,整个表达式结果是表达式1: 如果条件为false,整个表达式结果是表达式2: 注意:三元运算符不能单独 ...
- Django Class Based View
本节内容 一 Class Based View 基于类的视图 1. 类的视图 View 2. 类的视图 TemplateView 3. 类的视图 login_required解决方法 二 ...
- iOS-微信支付商户支付下单id非法
最近在APP中WKWebView中调用微信支付的时候,一直报商户支付下单id非法.看了n边微信文档,度娘了n次-----仍未解决.因为安卓的支付是没有问题的所以就跟安卓兄弟要了最终调用微信的字符串: ...
- Spring boot 配置文件参数映射到配置类属性
[参考文章]:SpringBoot之@EnableConfigurationProperties分析 [参考文章]:在Spring Boot中使用 @ConfigurationProperties 注 ...
- spring boot -thymeleaf-遍历list和map
遍历 list如下 th:each th:each 状态变量 var 遍历map如下(需要双层遍历) controller代码如下
- golang中GOPATH的简单理解
1.为什么要配置GOPATH 配置GOPATH的用意是为了方便项目的部署和构建,以及可以直接使用go get 命令下载第三方的包到自己的项目的src下和相关的执行文件bin目录,和中间文件pkg sr ...
- LDA-线性判别分析(四)其他几个相关问题
本来是要调研 Latent Dirichlet Allocation 的那个 LDA 的, 没想到查到很多关于 Linear Discriminant Analysis 这个 LDA 的资料.初步看了 ...
- Unsupervised learning无监督学习
Unsupervised learning allows us to approach problems with little or no idea what our results should ...