Cartographer源码阅读(6):LocalTrajectoryBuilder和PoseExtrapolator
LocalTrajectoryBuilder意思是局部轨迹的构建,下面的类图中方法的参数没有画进去。
注意其中的三个类:PoseExtrapolator类,RealTimeCorrelativeScanMatcher类和CeresScanMatcher类。
(1)PoseExtrapolator类(如下图),Node类和LocalTrajectoryBuilder类都有用到PoseExtrapolator对象,好像两者之间并没有什么关系?
LocalTrajectoryBuilder中的PoseExtrapolator对象类似于运动模型。
(Node类中的可能是为了发布位姿信息用的,单独进行了位姿推算。先不管了。)
PoseExtrapolator的构造函数 VS 通过IMU初始化InitializeWithImu方法。
在LocalTrajectoryBuilder::InitializeExtrapolator中对其构造函数的调用:
void LocalTrajectoryBuilder::InitializeExtrapolator(const common::Time time)
{
if (extrapolator_ != nullptr) {
return;
}
// We derive velocities from poses which are at least 1 ms apart for numerical
// stability. Usually poses known to the extrapolator will be further apart
// in time and thus the last two are used.
constexpr double kExtrapolationEstimationTimeSec = 0.001;
// TODO(gaschler): Consider using InitializeWithImu as 3D does.
extrapolator_ = common::make_unique<mapping::PoseExtrapolator>(
::cartographer::common::FromSeconds(kExtrapolationEstimationTimeSec),
options_.imu_gravity_time_constant());
extrapolator_->AddPose(time, transform::Rigid3d::Identity());
}
PoseExtrapolator::InitializeWithImu方法:
std::unique_ptr<PoseExtrapolator> PoseExtrapolator::InitializeWithImu(
const common::Duration pose_queue_duration,
const double imu_gravity_time_constant, const sensor::ImuData& imu_data)
{
auto extrapolator = common::make_unique<PoseExtrapolator>(pose_queue_duration, imu_gravity_time_constant);
extrapolator->AddImuData(imu_data);
extrapolator->imu_tracker_ =common::make_unique<ImuTracker>(imu_gravity_time_constant, imu_data.time);
extrapolator->imu_tracker_->AddImuLinearAccelerationObservation(
imu_data.linear_acceleration);
extrapolator->imu_tracker_->AddImuAngularVelocityObservation(
imu_data.angular_velocity);
extrapolator->imu_tracker_->Advance(imu_data.time);
extrapolator->AddPose(imu_data.time,transform::Rigid3d::Rotation(extrapolator->imu_tracker_->orientation()));
return extrapolator;
}
LocalTrajectoryBuilder的AddImuData和AddOdometryData方法不赘述。
void LocalTrajectoryBuilder::AddImuData(const sensor::ImuData& imu_data) {
CHECK(options_.use_imu_data()) << "An unexpected IMU packet was added.";
InitializeExtrapolator(imu_data.time);
extrapolator_->AddImuData(imu_data);
} void LocalTrajectoryBuilder::AddOdometryData(
const sensor::OdometryData& odometry_data) {
if (extrapolator_ == nullptr) {
// Until we've initialized the extrapolator we cannot add odometry data.
LOG(INFO) << "Extrapolator not yet initialized.";
return;
}
extrapolator_->AddOdometryData(odometry_data);
}
如下查看LocalTrajectoryBuilder::AddRangeData方法。如果使用IMU数据,直接进入10行,如果不是用进入7行。
std::unique_ptr<LocalTrajectoryBuilder::MatchingResult>
LocalTrajectoryBuilder::AddRangeData(const common::Time time,
const sensor::TimedRangeData& range_data)
{
// Initialize extrapolator now if we do not ever use an IMU.
if (!options_.use_imu_data())
{
InitializeExtrapolator(time);
}
if (extrapolator_ == nullptr)
{
// Until we've initialized the extrapolator with our first IMU message, we
// cannot compute the orientation of the rangefinder.
LOG(INFO) << "Extrapolator not yet initialized.";
return nullptr;
} CHECK(!range_data.returns.empty());
CHECK_EQ(range_data.returns.back()[], );
const common::Time time_first_point =
time + common::FromSeconds(range_data.returns.front()[]);
if (time_first_point < extrapolator_->GetLastPoseTime()) {
LOG(INFO) << "Extrapolator is still initializing.";
return nullptr;
} std::vector<transform::Rigid3f> range_data_poses;
range_data_poses.reserve(range_data.returns.size());
for (const Eigen::Vector4f& hit : range_data.returns) {
const common::Time time_point = time + common::FromSeconds(hit[]);
range_data_poses.push_back(
extrapolator_->ExtrapolatePose(time_point).cast<float>());
} if (num_accumulated_ == ) {
// 'accumulated_range_data_.origin' is uninitialized until the last
// accumulation.
accumulated_range_data_ = sensor::RangeData{{}, {}, {}};
} // Drop any returns below the minimum range and convert returns beyond the
// maximum range into misses.
for (size_t i = ; i < range_data.returns.size(); ++i) {
const Eigen::Vector4f& hit = range_data.returns[i];
const Eigen::Vector3f origin_in_local =
range_data_poses[i] * range_data.origin;
const Eigen::Vector3f hit_in_local = range_data_poses[i] * hit.head<>();
const Eigen::Vector3f delta = hit_in_local - origin_in_local;
const float range = delta.norm();
if (range >= options_.min_range()) {
if (range <= options_.max_range()) {
accumulated_range_data_.returns.push_back(hit_in_local);
} else {
accumulated_range_data_.misses.push_back(
origin_in_local +
options_.missing_data_ray_length() / range * delta);
}
}
}
++num_accumulated_; if (num_accumulated_ >= options_.num_accumulated_range_data()) {
num_accumulated_ = ;
const transform::Rigid3d gravity_alignment = transform::Rigid3d::Rotation(
extrapolator_->EstimateGravityOrientation(time));
accumulated_range_data_.origin =
range_data_poses.back() * range_data.origin;
return AddAccumulatedRangeData(
time,
TransformToGravityAlignedFrameAndFilter(
gravity_alignment.cast<float>() * range_data_poses.back().inverse(),
accumulated_range_data_),
gravity_alignment);
}
return nullptr;
}
接着,LocalTrajectoryBuilder::AddAccumulatedRangeData代码如下,传入的参数为3个。
const common::Time time,const sensor::RangeData& gravity_aligned_range_data, const transform::Rigid3d& gravity_alignment
重力定向,定向后的深度数据和定向矩阵。
注意下面21行代码执行了扫描匹配的ScanMatch方法,之后代码29行调用的extrapolator_->AddPose()方法:
每次扫描匹配之后执行AddPose方法。
std::unique_ptr<LocalTrajectoryBuilder::MatchingResult>
LocalTrajectoryBuilder::AddAccumulatedRangeData(
const common::Time time,
const sensor::RangeData& gravity_aligned_range_data,
const transform::Rigid3d& gravity_alignment)
{
if (gravity_aligned_range_data.returns.empty())
{
LOG(WARNING) << "Dropped empty horizontal range data.";
return nullptr;
} // Computes a gravity aligned pose prediction.
const transform::Rigid3d non_gravity_aligned_pose_prediction =
extrapolator_->ExtrapolatePose(time);
const transform::Rigid2d pose_prediction = transform::Project2D(
non_gravity_aligned_pose_prediction * gravity_alignment.inverse()); // local map frame <- gravity-aligned frame
std::unique_ptr<transform::Rigid2d> pose_estimate_2d =
ScanMatch(time, pose_prediction, gravity_aligned_range_data);
if (pose_estimate_2d == nullptr)
{
LOG(WARNING) << "Scan matching failed.";
return nullptr;
}
const transform::Rigid3d pose_estimate =
transform::Embed3D(*pose_estimate_2d) * gravity_alignment;
extrapolator_->AddPose(time, pose_estimate); sensor::RangeData range_data_in_local =
TransformRangeData(gravity_aligned_range_data,
transform::Embed3D(pose_estimate_2d->cast<float>()));
std::unique_ptr<InsertionResult> insertion_result =
InsertIntoSubmap(time, range_data_in_local, gravity_aligned_range_data,
pose_estimate, gravity_alignment.rotation());
return common::make_unique<MatchingResult>(
MatchingResult{time, pose_estimate, std::move(range_data_in_local),
std::move(insertion_result)});
} std::unique_ptr<LocalTrajectoryBuilder::InsertionResult>
LocalTrajectoryBuilder::InsertIntoSubmap(
const common::Time time, const sensor::RangeData& range_data_in_local,
const sensor::RangeData& gravity_aligned_range_data,
const transform::Rigid3d& pose_estimate,
const Eigen::Quaterniond& gravity_alignment)
{
if (motion_filter_.IsSimilar(time, pose_estimate))
{
return nullptr;
} // Querying the active submaps must be done here before calling
// InsertRangeData() since the queried values are valid for next insertion.
std::vector<std::shared_ptr<const Submap>> insertion_submaps;
for (const std::shared_ptr<Submap>& submap : active_submaps_.submaps())
{
insertion_submaps.push_back(submap);
}
active_submaps_.InsertRangeData(range_data_in_local); sensor::AdaptiveVoxelFilter adaptive_voxel_filter(
options_.loop_closure_adaptive_voxel_filter_options());
const sensor::PointCloud filtered_gravity_aligned_point_cloud =
adaptive_voxel_filter.Filter(gravity_aligned_range_data.returns); return common::make_unique<InsertionResult>(InsertionResult{
std::make_shared<const mapping::TrajectoryNode::Data>(
mapping::TrajectoryNode::Data{
time,
gravity_alignment,
filtered_gravity_aligned_point_cloud,
{}, // 'high_resolution_point_cloud' is only used in 3D.
{}, // 'low_resolution_point_cloud' is only used in 3D.
{}, // 'rotational_scan_matcher_histogram' is only used in 3D.
pose_estimate}),
std::move(insertion_submaps)});
}
LocalTrajectoryBuilder::AddAccumulatedRangeData
(2)RealTimeCorrelativeScanMatcher类,实时的扫描匹配,用的相关分析方法。
Cartographer源码阅读(6):LocalTrajectoryBuilder和PoseExtrapolator的更多相关文章
- Cartographer源码阅读(4):Node和MapBuilder对象2
MapBuilder的成员变量sensor::Collator sensor_collator_; 再次阅读MapBuilder::AddTrajectoryBuilder方法.首先构造了mappin ...
- Cartographer源码阅读(2):Node和MapBuilder对象
上文提到特别注意map_builder_bridge_.AddTrajectory(x,x),查看其中的代码.两点: 首先是map_builder_.AddTrajectoryBuilder(...) ...
- Cartographer源码阅读(7):轨迹推算和位姿推算的原理
其实也就是包括两个方面的内容:类似于运动模型的位姿估计和扫描匹配,因为需要计算速度,所以时间就有必要了! 1. PoseExtrapolator解决了IMU数据.里程计和位姿信息进行融合的问题. 该类 ...
- Cartographer源码阅读(3):程序逻辑结构
Cartographer早期的代码在进行3d制图的时候使用了UKF方法,查看现有的tag版本,可以转到0.1.0和0.2.0查看,包含kalman_filter文件夹. 文件夹中的pose_track ...
- Cartographer源码阅读(1):程序入口
带着几个思考问题: (1)IMU数据的使用,如何融合,Kalman滤波? (2)图优化的具体实现,闭环检测的策略? (3)3D激光的接入和闭环策略? 1. 安装Kdevelop工具: http://b ...
- Cartographer源码阅读(8):imu_tracker
IMU的输入为imu_linear_acceleration 和 imu_angular_velocity 线加速和角速度.最终作为属性输出的是方位四元数. Eigen::Quaterniond ...
- Cartographer源码阅读(5):PoseGraph位姿图
PoseGraph位姿图 mapping2D::PoseGraph类的注释: // Implements the loop closure method called Sparse Pose Adju ...
- Cartographer源码阅读(9):图优化的前端——闭环检测
约束计算 闭环检测的策略:搜索闭环,通过匹配检测是否是闭环,采用了分支定界法. 前已经述及PoseGraph的内容,此处继续.位姿图类定义了pose_graph::ConstraintBuilder ...
- 【原】FMDB源码阅读(三)
[原]FMDB源码阅读(三) 本文转载请注明出处 —— polobymulberry-博客园 1. 前言 FMDB比较优秀的地方就在于对多线程的处理.所以这一篇主要是研究FMDB的多线程处理的实现.而 ...
随机推荐
- C语言 · 单词数统计
单词数统计 输入一个字符串,求它包含多少个单词. 单词间以一个或者多个空格分开. 第一个单词前,最后一个单词后也可能有0到多个空格. 比如:" abc xyz" 包含两个单词 ...
- Sword 内核队列一
1.gfifo概述 gfifo是一个First In First Out数据结构,它采用环形循环队列的数据结构来实现:它提供一个无边界的字节流服务,最重要的一点是,它使用并行无锁编程技术,即当它用于只 ...
- Java 判断字符串 中文是否为乱码
import java.util.regex.Matcher; import java.util.regex.Pattern; public class ChineseUtill { private ...
- docker安装和使用
1.安装的docker版本 docker -v Docker version 17.03.2-ce 2.查看本地的镜像 docker images 3.拉取镜像 docker pull centos: ...
- 给你的app添加桌面widget
首先,什么是桌面widget,桌面widget是一种桌面插件,如下图: 这种类型的控件叫做widget,一般长按桌面会弹出一个界面让你选择控件,选择完了拖到桌面就能使用了. 下面我们为这个app来添加 ...
- log4j Tricks (log4j 1.2)
1. 开启 log4j 框架内部的日志输出到控制台 # 在 log4j.properties 中添加log4j.debug=true # 配置 log4j 框架内部的日志通过 System.out 输 ...
- k8s(6)-滚动更新
用户希望应用程序始终可用,开发人员应该每天多次部署新版本的应用程序.在Kubernetes中,这是通过滚动更新完成的.滚动更新允许通过使用新的实例逐步更新Pods实例来实现部署的更新,从而实现零停机. ...
- JS设计模式——工厂模式详解
它的领域中同其它模式的不同之处在于它并没有明确要求我们使用一个构造器.取而代之,一个工厂能提供一个创建对象的公共接口,我们可以在其中指定我们希望被创建的工厂对象的类型. 简单工厂模式:使用一个类(通常 ...
- (二)区块链的共识算法:PoS 及其 例子 代码 实现
作者:林冠宏 / 指尖下的幽灵 掘金:https://juejin.im/user/587f0dfe128fe100570ce2d8 博客:http://www.cnblogs.com/linguan ...
- geotrellis使用(四十二)将 Shp 文件转为 GeoJson
前言 一个多月没有写博客了,今天尝试着动笔写点. 原因很多,最重要的原因是我转行了.是的,我离开了开发岗位,走向了开发的天敌-产品经理.虽然名义上是产品经理,但是干的事情也很杂,除了不写代码,其他的都 ...