转载请注明出处:

https://www.cnblogs.com/darkknightzh/p/9989586.html

代码网址:

https://github.com/darkknightzh/trainEagerMnist

参考网址:

https://github.com/tensorflow/models/blob/master/official/mnist/mnist_eager.py

https://github.com/madalinabuzau/tensorflow-eager-tutorials/blob/master/07_convolutional_neural_networks_for_emotion_recognition.ipynb

总体流程

tensorflow使用eager时,需要下面几句话(如果不使用第三句话,则依旧可以使用静态图):

import tensorflow as tf
import tensorflow.contrib.eager as tfe
tfe.enable_eager_execution()

tensorflow使用eager模式后,感觉和pytorch一样方便。使用eager后,不需要tf.placeholder,用起来更加方便。

目前貌似tf.keras.layers和tf.layers支持eager,slim不支持。

总体流程如下:

initial optimizer
for I in range(epochs):
for imgs, targets in training_data:
with tf.GradientTape() as tape:
logits = model(imgs, training=True)
loss_value = calc_loss(logits, targets)
grads = tape.gradient(loss_value, model.variables)
optimizer.apply_gradients(zip(grads, model.variables), global_step=step_counter)
update training_accurate, total_loss
test model
save model

创建模型

可以使用下面三种方式创建模型

1. 类似pytorch的方式

先在__init__中定义用到的层,然后重载call函数,构建网络。模型前向计算时,会调用call函数。如下面代码所示:

 class simpleModel(tf.keras.Model):
def __init__(self, num_classes):
super(simpleModel, self).__init__() input_shape = [28, 28, 1]
data_format = 'channels_last'
self.reshape = tf.keras.layers.Reshape(target_shape=input_shape, input_shape=(input_shape[0] * input_shape[1],)) self.conv1 = tf.keras.layers.Conv2D(16, 5, padding="same", activation='relu')
self.batch1 = tf.keras.layers.BatchNormalization()
self.pool1 = tf.keras.layers.MaxPooling2D((2, 2), (2, 2), padding='same', data_format=data_format) self.conv2 = tf.keras.layers.Conv2D(32, 5, padding="same", activation='relu')
self.batch2 = tf.keras.layers.BatchNormalization()
self.pool2 = tf.keras.layers.MaxPooling2D((2, 2), (2, 2), padding='same', data_format=data_format) self.conv3 = tf.keras.layers.Conv2D(64, 5, padding="same", activation='relu')
self.batch3 = tf.keras.layers.BatchNormalization()
self.pool3 = tf.keras.layers.MaxPooling2D((2, 2), (2, 2), padding='same', data_format=data_format) self.conv4 = tf.keras.layers.Conv2D(64, 5, padding="same", activation='relu')
self.batch4 = tf.keras.layers.BatchNormalization()
self.pool4 = tf.keras.layers.MaxPooling2D((2, 2), (2, 2), padding='same', data_format=data_format) self.flat = tf.keras.layers.Flatten()
self.fc5 = tf.keras.layers.Dense(1024, activation='relu')
self.batch5 = tf.keras.layers.BatchNormalization() self.fc6 = tf.keras.layers.Dense(num_classes)
self.batch6 = tf.keras.layers.BatchNormalization() def call(self, inputs, training=None):
x = self.reshape(inputs) x = self.conv1(x)
x = self.batch1(x, training=training)
x = self.pool1(x) x = self.conv2(x)
x = self.batch2(x, training=training)
x = self.pool2(x) x = self.conv3(x)
x = self.batch3(x, training=training)
x = self.pool3(x) x = self.conv4(x)
x = self.batch4(x, training=training)
x = self.pool4(x) x = self.flat(x)
x = self.fc5(x)
x = self.batch5(x, training=training) x = self.fc6(x)
x = self.batch6(x, training=training)
# x = tf.layers.dropout(x, rate=0.3, training=training)
return x def get_acc(self, target):
correct_prediction = tf.equal(tf.argmax(self.logits, 1), tf.argmax(target, 1))
acc = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
return acc def get_loss(self):
return self.loss def loss_fn(self, images, target, training):
self.logits = self(images, training) # call call(self, inputs, training=None) function
self.loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=self.logits, labels=target))
return self.loss def grads_fn(self, images, target, training): # do not return loss and acc if unnecessary
with tfe.GradientTape() as tape:
loss = self.loss_fn(images, target, training)
return tape.gradient(loss, self.variables)

2. 直接使用tf.keras.Sequential

如下面代码所示:

 def create_model1():
data_format = 'channels_last'
input_shape = [28, 28, 1]
l = tf.keras.layers
max_pool = l.MaxPooling2D((2, 2), (2, 2), padding='same', data_format=data_format)
# The model consists of a sequential chain of layers, so tf.keras.Sequential (a subclass of tf.keras.Model) makes for a compact description.
return tf.keras.Sequential(
[
l.Reshape(target_shape=input_shape, input_shape=(28 * 28,)),
l.Conv2D(16, 5, padding='same', data_format=data_format, activation=tf.nn.relu),
l.BatchNormalization(),
max_pool, l.Conv2D(32, 5, padding='same', data_format=data_format, activation=tf.nn.relu),
l.BatchNormalization(),
max_pool, l.Conv2D(64, 5, padding='same', data_format=data_format, activation=tf.nn.relu),
l.BatchNormalization(),
max_pool, l.Conv2D(64, 5, padding='same', data_format=data_format, activation=tf.nn.relu),
l.BatchNormalization(),
max_pool, l.Flatten(),
l.Dense(1024, activation=tf.nn.relu),
l.BatchNormalization(), # # l.Dropout(0.4),
l.Dense(10),
l.BatchNormalization()
])

3. 使用tf.keras.Sequential()及add函数

如下面代码所示:

 def create_model2():
data_format = 'channels_last'
input_shape = [28, 28, 1] model = tf.keras.Sequential() model.add(tf.keras.layers.Reshape(target_shape=input_shape, input_shape=(input_shape[0] * input_shape[1],))) model.add(tf.keras.layers.Conv2D(16, 5, padding="same", activation='relu'))
model.add(tf.keras.layers.BatchNormalization())
model.add(tf.keras.layers.MaxPooling2D((2, 2), (2, 2), padding='same', data_format=data_format)) model.add(tf.keras.layers.Conv2D(32, 5, padding="same", activation='relu'))
model.add(tf.keras.layers.BatchNormalization())
model.add(tf.keras.layers.MaxPooling2D((2, 2), (2, 2), padding='same', data_format=data_format)) model.add(tf.keras.layers.Conv2D(64, 5, padding="same", activation='relu'))
model.add(tf.keras.layers.BatchNormalization())
model.add(tf.keras.layers.MaxPooling2D((2, 2), (2, 2), padding='same', data_format=data_format)) model.add(tf.keras.layers.Conv2D(64, 5, padding="same", activation='relu'))
model.add(tf.keras.layers.BatchNormalization())
model.add(tf.keras.layers.MaxPooling2D((2, 2), (2, 2), padding='same', data_format=data_format)) model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(1024, activation='relu'))
model.add(tf.keras.layers.BatchNormalization()) model.add(tf.keras.layers.Dense(10))
model.add(tf.keras.layers.BatchNormalization()) return model

使用动态图更新梯度

在更新梯度时,需要加上下面的几句话

 with tf.GradientTape() as tape:
logits = model(imgs, training=True)
loss_value = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=labs))
grads = tape.gradient(loss_value, model.variables)
optimizer.apply_gradients(zip(grads, model.variables), global_step=step_counter)

第二行得到特征,第三行得到损失,第四行得到梯度,第五行将梯度应用到模型,更新模型参数。

保存及载入模型

1. 使用tfe.Saver

代码如下

 def saveModelV1(model_dir, model, global_step, modelname='model1'):
tfe.Saver(model.variables).save(os.path.join(model_dir, modelname), global_step=global_step)
def restoreModelV1(model_dir, model):
dummy_input = tf.constant(tf.zeros((1, 28, 28, 1))) # Run the model once to initialize variables
dummy_pred = model(dummy_input, training=False) saver = tfe.Saver(model.variables) # Restore the variables of the model
saver.restore(tf.train.latest_checkpoint(model_dir))

2. 使用tf.train.Checkpoint

代码如下

 step_counter = tf.train.get_or_create_global_step()
checkpoint = tf.train.Checkpoint(model=model, optimizer=optimizer, step_counter=step_counter) def saveModelV2(model_dir, checkpoint, modelname='model2'):
checkpoint_prefix = os.path.join(model_dir, modelname)
checkpoint.save(checkpoint_prefix) def restoreModelV2(model_dir, checkpoint):
checkpoint.restore(tf.train.latest_checkpoint(model_dir))

具体代码

代码未严格按照总体流程的步骤,仅供参考,见https://github.com/darkknightzh/trainEagerMnist

其中eagerFlag为使用eager的方式,0为不使用eager(使用静态图),1为使用V1的方式,2为使用V2的方式。当使用静态图时,不要加tfe.enable_eager_execution(),否则会报错。具体可参考代码。

(原)tensorflow使用eager在mnist上训练的简单例子的更多相关文章

  1. tensorflow -gpu安装,史上最新最简单的途径(不用自己装cuda,cdnn)

    tensorflow -gpu安装首先,安装Anoconda1. 官网下载点我: 2.安装 点击 python 3.6 version自动下载x64版,下载好之后,然后安装. 如图,打上勾之后,一路n ...

  2. asp.net.mvc 的单文件上传和多文件上传的简单例子

    首先打开vs2012,创建空的mvc4项目,名称为MVCStudy,选择基本模板

  3. [原][osg][QT]osg与QT界面结合的简单例子二

    //main.cpp #include "VREObliqueEditorQTWindow.h" #include <QtWidgets/QApplication> # ...

  4. tensorflow 13:多gpu 并行训练

    多卡训练模式: 进行深度学习模型训练的时候,一般使用GPU来进行加速,当训练样本只有百万级别的时候,单卡GPU通常就能满足我们的需求,但是当训练样本量达到上千万,上亿级别之后,单卡训练耗时很长,这个时 ...

  5. 深度学习笔记 (二) 在TensorFlow上训练一个多层卷积神经网络

    上一篇笔记主要介绍了卷积神经网络相关的基础知识.在本篇笔记中,将参考TensorFlow官方文档使用mnist数据集,在TensorFlow上训练一个多层卷积神经网络. 下载并导入mnist数据集 首 ...

  6. tensorflow中使用mnist数据集训练全连接神经网络-学习笔记

    tensorflow中使用mnist数据集训练全连接神经网络 ——学习曹健老师“人工智能实践:tensorflow笔记”的学习笔记, 感谢曹老师 前期准备:mnist数据集下载,并存入data目录: ...

  7. 深度学习-tensorflow学习笔记(2)-MNIST手写字体识别

    深度学习-tensorflow学习笔记(2)-MNIST手写字体识别超级详细版 这是tf入门的第一个例子.minst应该是内置的数据集. 前置知识在学习笔记(1)里面讲过了 这里直接上代码 # -*- ...

  8. Caffe系列4——基于Caffe的MNIST数据集训练与测试(手把手教你使用Lenet识别手写字体)

    基于Caffe的MNIST数据集训练与测试 原创:转载请注明https://www.cnblogs.com/xiaoboge/p/10688926.html  摘要 在前面的博文中,我详细介绍了Caf ...

  9. 【实践】如何利用tensorflow的object_detection api开源框架训练基于自己数据集的模型(Windows10系统)

    如何利用tensorflow的object_detection api开源框架训练基于自己数据集的模型(Windows10系统) 一.环境配置 1. Python3.7.x(注:我用的是3.7.3.安 ...

随机推荐

  1. SSH框架学习------struts2(一)

    1.总的目录 2.所有程序 1)index.jsp很简单 <%@ page language="java" contentType="text/html; char ...

  2. Spring Boot 项目实战(四)集成 Redis

    一.前言 上篇介绍了接口文档工具 Swagger 及项目监控工具 JavaMelody 的集成过程,使项目更加健壮.在 JAVA Web 项目某些场景中,我们需要用缓存解决如热点数据访问的性能问题,业 ...

  3. ps无法存储为PNG

    ps无法存储为PNG,通过各种手段看是否能解决: 第一种:合并图层以后再存储: 第二种:更改存储的名称: 第三种:直接重启ps.

  4. C#如何使用REST接口读写数据

    原网站:http://www.codeproject.com/Tips/497123/How-to-make-REST-requests-with-Csharp 一个类,我们拷贝下来直接调用就行: 以 ...

  5. python核心语法

    一.语句和语法 #:注释 \:转译回车,继续上一行,在一行语句较长的情况下可以使用其来切分成多行,因其可读性差所以不建议使用 ::将两个语句连接到一行,可读性差,不建议使用 ::将代码的头和体分开 语 ...

  6. class关键字

    class的数据类型为function,可以看做构造函数的另一种写法.事实上,类的所有方法都定义在类的prototype属性上面.一.声明class class Animal { constructo ...

  7. vue中的页面渲染方案

    一.模板渲染 <div id="J_render_app"> <ul v-if="items.length"> <li v-for ...

  8. java 日期递增

    public static void main(String[] args) throws ParseException { // 方法一 // Format f = new SimpleDateFo ...

  9. BZOJ.4199.[NOI2015]品酒大会(后缀自动机 树形DP)

    BZOJ 洛谷 后缀数组做法. 洛谷上SAM比SA慢...BZOJ SAM却能快近一倍... 只考虑求极长相同子串,即所有后缀之间的LCP. 而后缀的LCP在后缀树的LCA处.同差异这道题,在每个点处 ...

  10. 【树形期望DP】BZOJ3566- [SHOI2014]概率充电器

    [题目大意] 充电器由 n-1 条导线连通了 n 个充电元件.这n-1条导线均有一个通电概率p%,而每个充电元件本身有直接被充电的概率q[i]%.问期望有多少个充电元件处于充电状态? [思路] 第一次 ...