keras提供了VGG19在ImageNet上的预训练权重模型文件,其他可用的模型还有VGG16、Xception、ResNet50、InceptionV3 4个。

VGG19在keras中的定义:

def VGG19(include_top=True, weights='imagenet',
input_tensor=None, input_shape=None,
pooling=None,
classes=1000)
  1. include_top: 是否包含最后的3个全连接层

  2. weights: 定义为‘imagenet’,表示加载在imagenet数据库上训练的预训练权重,定义为None则不加载权重,参数随机初始化

包含最后3个全连接层的VGG19模型下载地址:  https://github.com/fchollet/deep-learning-models/releases/download/v0.1/vgg19_weights_tf_dim_ordering_tf_kernels.h5

不包含最后3个全连接层的VGG19模型下载地址: https://github.com/fchollet/deep-learning-models/releases/download/v0.1/vgg19_weights_tf_dim_ordering_tf_kernels_notop.h5

不包含全连接层的VGG19模型文件名称是" vgg19_weights_tf_dim_ordering_tf_kernels_notop.h5 " ,文件大小约80MB;

包含全连接层的VGG19模型文件名称是 " vgg19_weights_tf_dim_ordering_tf_kernels.h5 " ,文件大小约575MB

ubuntu中,下载的VGG19模型文件的本地路径是 ~/.keras/models/ , .keras是一个隐藏文件夹。可以预先下载模型文件放到对应目录下,程序执行时检测到存在模型文件就不会再下载了。

使用VGG19预训练模型分类图片的例子

# coding: utf-8
from keras.applications.vgg19 import VGG19
from keras.preprocessing import image
from keras.applications.vgg19 import preprocess_input
from keras.models import Model
import numpy as np base_model = VGG19(weights='imagenet', include_top=True)
img_path = 'cat.jpg'
img = image.load_img(img_path, target_size=(224, 224)) # 加载图像,归一化大小
x = image.img_to_array(img) # 序列化
x = np.expand_dims(x, axis=0) # 展开
x = preprocess_input(x) # 预处理到0~1
out = base_model.predict(x) # 预测结果,1000维的向量
print(out.shape) # (1,1000)

程序首先加载带3个全连接层的VGG19模型,然后读入图片并做格式转换和归一化等处理后执行VGG模型预测,预测结果out是一个1000维的向量,代表了预测结果分别属于10000个分类的概率,形状是(1,1000),out内容如下:

使用VGG19预训练模型提取VGG19网络中任意层的输出特征的例子

上个例子可以看到keras对VGG网络的封装异常好,简单几行代码就可以分类图片。keras中VGG预训练参数模型另一个更常用的应用是可以提取VGG网络中任意一层的特征。

以下例子提取的是VGG19网络中第5个卷积层的输出特征(也是第1个全连接层的输入特征)

# coding: utf-8
from keras.applications.vgg19 import VGG19
from keras.preprocessing import image
from keras.applications.vgg19 import preprocess_input
from keras.models import Model
import numpy as np base_model = VGG19(weights='imagenet', include_top=False)
model = Model(inputs=base_model.input, outputs=base_model.get_layer('block5_pool').output)
img_path = 'cat.jpg'
img = image.load_img(img_path, target_size=(224, 224))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
block5_pool_features = model.predict(x)
print(block5_pool_features.shape) #(1, 7, 7, 512)

base_model.get_layer('block5_pool')中的block5_pool参数定义了获取的是第5个卷积层的输出。第5层的输出是一个 1×7×7×512的向量,如下:

也可以设置为加载最后3个全连接层的VGG19网络,就可以获取最后3个全连接层的输出了:

# coding: utf-8
from keras.applications.vgg19 import VGG19
from keras.preprocessing import image
from keras.applications.vgg19 import preprocess_input
from keras.models import Model
import numpy as np
base_model = VGG19(weights='imagenet', include_top=True)
model = Model(inputs=base_model.input, outputs=base_model.get_layer('fc2').output)
img_path = 'cat.jpg'
img = image.load_img(img_path, target_size=(224, 224))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
fc2 = model.predict(x)
print(fc2.shape) #(1, 4096)

加了全连接层,所以base_model.get_layer('fc2') 里参数也可以是 flatten、fc1、fc2和predictions 。

VGG19各个模块在keras中定义的名称如下,可以根据名称轻松获取该层特征:

keras中VGG19预训练模型的使用的更多相关文章

  1. keras中使用预训练模型进行图片分类

    keras中含有多个网络的预训练模型,可以很方便的拿来进行使用. 安装及使用主要参考官方教程:https://keras.io/zh/applications/   https://keras-cn. ...

  2. C#中的深度学习(五):在ML.NET中使用预训练模型进行硬币识别

    在本系列的最后,我们将介绍另一种方法,即利用一个预先训练好的CNN来解决我们一直在研究的硬币识别问题. 在这里,我们看一下转移学习,调整预定义的CNN,并使用Model Builder训练我们的硬币识 ...

  3. Keras下载的数据集以及预训练模型保存在哪里

    Keras下载的数据集在以下目录中: root\\.keras\datasets Keras下载的预训练模型在以下目录中: root\\.keras\models 在win10系统来说,用户主目录是: ...

  4. PyTorch-网络的创建,预训练模型的加载

    本文是PyTorch使用过程中的的一些总结,有以下内容: 构建网络模型的方法 网络层的遍历 各层参数的遍历 模型的保存与加载 从预训练模型为网络参数赋值 主要涉及到以下函数的使用 add_module ...

  5. 自然语言处理(三) 预训练模型:XLNet 和他的先辈们

    预训练模型 在CV中,预训练模型如ImagNet取得很大的成功,而在NLP中之前一直没有一个可以承担此角色的模型,目前,预训练模型如雨后春笋,是当今NLP领域最热的研究领域之一. 预训练模型属于迁移学 ...

  6. Paddle预训练模型应用工具PaddleHub

    Paddle预训练模型应用工具PaddleHub 本文主要介绍如何使用飞桨预训练模型管理工具PaddleHub,快速体验模型以及实现迁移学习.建议使用GPU环境运行相关程序,可以在启动环境时,如下图所 ...

  7. 我的Keras使用总结(4)——Application中五款预训练模型学习及其应用

    本节主要学习Keras的应用模块 Application提供的带有预训练权重的模型,这些模型可以用来进行预测,特征提取和 finetune,上一篇文章我们使用了VGG16进行特征提取和微调,下面尝试一 ...

  8. 【tf.keras】tf.keras加载AlexNet预训练模型

    目录 从 PyTorch 中导出模型参数 第 0 步:配置环境 第 1 步:安装 MMdnn 第 2 步:得到 PyTorch 保存完整结构和参数的模型(pth 文件) 第 3 步:导出 PyTorc ...

  9. 预训练模型与Keras.applications.models权重资源地址

    什么是预训练模型 简单来说,预训练模型(pre-trained model)是前人为了解决类似问题所创造出来的模型.你在解决问题的时候,不用从零开始训练一个新模型,可以从在类似问题中训练过的模型入手. ...

随机推荐

  1. MI200e电力线通讯

    最近做课设,选了电力线通讯这种途径,经过百度google等一番查询,最终敲定了mi200e这块国产芯片. 课设要求就是双机通讯,互传传感器信息以及模拟一个时钟 然后淘宝买了拆机的成品,我拿回来把mcu ...

  2. [C++ Primer Plus] 第4章、复合类型(二)课后习题

    1.编写一个 c++ 程序,如下述输出示例所示的那样请求并显示信息 : What is your first name? Betty SueWhat is your last name? YeweWh ...

  3. ubuntu16.04安装wordpress

    ubuntu16.04安装wordpress和centos7安装wordpress存在一定的差异. 当然共性大于差异. 共性是lamp环境. wordpress的必备环境. 先共性再差异. 一.搭建l ...

  4. 构建oracle12c的Docker镜像

    1. 准备工作 需要下载oracle相关的东东,例如安装文件,dockerfile.这些都可以从oracle 的github 上面找到.https://github.com/oracle/docker ...

  5. linux安装redis ,mariadb

    linux下安装软件方法 1 rpm (不推荐使用) 2 yum 安装(非常方便快捷) 3 编译安装(需要自定制的时候才使用) 安装mariadb(mysql) 1 使用官方源安装mariadb vi ...

  6. 连手机logcat,出现read:unexpected EOF

    使用logcat时,出现: 网上搜原因解释为log太多,普遍的解决方法是: adb logcat -G 20m 根本解决方法推荐:开发者设置,增大log size

  7. Lucene全文检索入门使用

    一. 什么是全文检索 全文检索是计算机程序通过扫描文章中的每一个词,对每一个词建立一个索引,指明该词在文章中出现的次数和位置.当用户查询时根据建立的索引查找,类似于通过字典的检索字表查字的过程 全文检 ...

  8. redis特性,使用场景

    redis特性: 1.redis保存在内存中,读写速度快. 2.redis--持久化(断电数据不丢失:对数据的更新将异步保存到磁盘上). 3.redis数据结构丰富 4.redis功能丰富 5.简单( ...

  9. 【问题】用ant编译时,提示编码utf为不可映射字符

    分析:eclipse默认的编码为gbk,而ant里的build.xml文件里定义的为utf-8格式.两者格式不统一. 建议:将工程的编码改成utf-8的格式,一般java工程也建议为utf-8格式.

  10. numpy.where() 用法详解

    numpy.where (condition[, x, y]) numpy.where() 有两种用法: 1. np.where(condition, x, y) 满足条件(condition),输出 ...