基础


在参考①中我们详细介绍了没有隐含层的神经网络结构,该神经网络只有输入层和输出层,并且输入层和输出层是通过全连接方式进行连接的。具体结构如下:

我们用此网络结构基于MNIST数据集(参考②)进行训练,在MNIST数据集中每张图像的分辨率为28*28,即784维,对应于上图中的x; 而输出为数字类别,即0~9,因此上图中的y的维度维10。因此权重w的维度为[784, 10],wi,j代表第j维的特征对应的第i类的权重值,主要是为了矩阵相乘时计算的方便,具体见下面代码。

训练过程


1、训练过程中反向传播优化器选择了梯度下降算法,结合代码中使用batch训练,因此梯度下降算法是mini-batch,也就使用batch_size(代码中为100)的批量梯度下降算法。

2、损失函数选择使用了softmax的交叉熵。

from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf # 加载数据
mnist = input_data.read_data_sets('/home/workspace/python/tf/data/mnist', one_hot=True) # 创建模型
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
y = tf.matmul(x, W) + b # 正确的样本标签
y_ = tf.placeholder(tf.float32, [None, 10]) # 损失函数选择softmax后的交叉熵,结果作为y的输出
cross_entropy = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y))
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy) sess = tf.InteractiveSession()
tf.global_variables_initializer().run() # 训练过程
for _ in range(1000):
batch_xs, batch_ys = mnist.train.next_batch(100)
sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys}) #使用测试集评估准确率
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print (sess.run(accuracy, feed_dict = {x: mnist.test.images,
y_: mnist.test.labels}))

输出:92%左右。

软件版本


TensorFlow 1.0.1  +  Python 2.7.12

参考


①、使用Softmax回归将神经网络输出转成概率分布

②、使用Tensorflow操作MNIST数据

③、github上的tensorflow官方示例代码

④、tensorflow官网针对MNIST数据集的入门介绍

基于MNIST数据集使用TensorFlow训练一个没有隐含层的浅层神经网络的更多相关文章

  1. 基于MNIST数据集使用TensorFlow训练一个包含一个隐含层的全连接神经网络

    包含一个隐含层的全连接神经网络结构如下: 包含一个隐含层的神经网络结构图 以MNIST数据集为例,以上结构的神经网络训练如下: #coding=utf-8 from tensorflow.exampl ...

  2. 【深度学习笔记】(二)基于MNIST数据集的神经网络实验

    一.介绍 MNIST(Mixed National Institute of Standards and Technology database)是网上著名的公开数据库之一,是一个入门级的计算机视觉数 ...

  3. linux-基于tensorflow2.x的手写数字识别-基于MNIST数据集

    数据集 数据集下载MNIST 首先读取数据集, 并打印相关信息 包括 图像的数量, 形状 像素的最大, 最小值 以及看一下第一张图片 path = 'MNIST/mnist.npz' with np. ...

  4. 基于 tensorflow 的 mnist 数据集预测

    1. tensorflow 基本使用方法 2. mnist 数据集简介与预处理 3. 聚类算法模型 4. 使用卷积神经网络进行特征生成 5. 训练网络模型生成结果 how to install ten ...

  5. 【TensorFlow/简单网络】MNIST数据集-softmax、全连接神经网络,卷积神经网络模型

    初学tensorflow,参考了以下几篇博客: soft模型 tensorflow构建全连接神经网络 tensorflow构建卷积神经网络 tensorflow构建卷积神经网络 tensorflow构 ...

  6. TensorFlow——LSTM长短期记忆神经网络处理Mnist数据集

    1.RNN(Recurrent Neural Network)循环神经网络模型 详见RNN循环神经网络:https://www.cnblogs.com/pinard/p/6509630.html 2. ...

  7. pytorch实现MLP并在MNIST数据集上验证

    写在前面 由于MLP的实现框架已经非常完善,网上搜到的代码大都大同小异,而且MLP的实现是deeplearning学习过程中较为基础的一个实验.因此完全可以找一份源码以参考,重点在于照着源码手敲一遍, ...

  8. tensorFlow(四)浅层神经网络

    tensorFlow见基础 实验 MNIST数据集介绍 MNIST是一个手写阿拉伯数字的数据集. 其中包含有60000个已经标注了的训练集,还有10000个用于测试的测试集. 本次实验的任务就是通过手 ...

  9. TensorFlow 训练MNIST数据集(2)—— 多层神经网络

    在我的上一篇随笔中,采用了单层神经网络来对MNIST进行训练,在测试集中只有约90%的正确率.这次换一种神经网络(多层神经网络)来进行训练和测试. 1.获取MNIST数据 MNIST数据集只要一行代码 ...

随机推荐

  1. window.localStorag使用

    H5本地缓存: 删除: window.localStorage.removeItem("parentNode") 写入: window.localStorage.setItem(& ...

  2. decode encode

    https://blog.csdn.net/crylearner/article/details/38521685,python常用的十进制.16进制.字符串.字节串之间的转换

  3. navicat连接Oracle数据库

    记录一下navicat连接Oracle数据库过程: 一.根据自己版本去Oracle官网下载instantclient 地址:https://www.oracle.com/technetwork/top ...

  4. 谈谈我对Linux系统学习的历程回顾

    ​​众所周知,Windows 和Linux 是目前最流行的2个操作系统.Windows系统适合普通用户,它的优势是图形化界面,简单易用,使用起来门槛很低,很容易上手,所以,windows占有了大多数普 ...

  5. 汇编语言debug入门

    进入windows操作系统,因为我的虚拟机用的是win7 64位,所以装了一个Dos Box 的软件来执行这些指令. 输入debug回车,这样就进入了debug模式. 1: 输入 -r 查看或者修改寄 ...

  6. 用setTimeout模拟setInterval的功能

    偶然看到这个题目,稍微写了下,做个笔记,不足之处请指正 //用setTimeout模仿setInterval var MyInterVal = function(fun,tm){ if(this == ...

  7. 查看shell 命令 路径

    type [root@web01 ~]# type mount mount is /bin/mount which [root@web01 ~]# type ifconfig ifconfig is ...

  8. Java RedisClient

    package org.rx.util; import org.redisson.Redisson; import org.redisson.api.RedissonClient; import or ...

  9. 《TypeScript 中文入门教程》

    转载:<TypeScript 中文入门教程> 17.注解 (2015-12-03 11:36) 转载:<TypeScript 中文入门教程> 16.Symbols (2015- ...

  10. 解决Error parsing SQL Mapper Configuration. Cause: java.io.IOException: Could not find resource com/cqupt/paging/dao/User.xml

    搭建了一个ssm项目,启动报错Error parsing SQL Mapper Configuration. Cause: java.io.IOException: Could not find re ...