Introduction

当前主要的非监督方法都采用相同的训练数据集,这些数据集在不同摄像头中是对称的,即不存在单个行人的错误项,这些方法将在实际场景中效果下降。在本方法中,作者引入了非对称数据,如下图所示,提出了一个在真实环境下的非监督深度神经网络。

提出一个标签估计方法:a novel Robust Anchor Embeding (RACE) framework。

Proposed Method

(1)概述:

通俗来说,先固定几个序列,给这几个序列加上标签作为anchor,然后输入一个未标签序列,找出距离最近的若干个anchor,用这些anchor加权表示出这个未标签序列,这样既得到了相似距离又得到了权重,我们希望距离越近越好,权重越大越好,综上计算出最佳的anchor,作为预测的标签,循环这个过程得到所有的标签。

(2)Anchor初始化:

【注】anchor表示不同行人的身份,但在假设下并不严谨,两个anchor也可能属于同一个人。

随机抽选 m 个anchor序列  传入预训练的ImageNet模型,分别表示不同的行人,即:,其中  表示帧级特征向量的集合,l 表示对应的初始化标签。

在本文中,采用classification loss(Person re-identification: Past, present and future. 提出)来作为训练的基础结构。【待阅读】

(3)标签估计:

① 鲁棒的Anchor嵌入方法:

定义未标签的视频序列为:。初始的帧级特征向量集合采用平均池化或者最大池化转化为单向量特征。考虑到一些帧存在跟踪偏差,即产生了离群帧(outlier frame),作者采用了regularized affine hull(RAH,From point to set: Extend the learning of distance metrics提出)【待阅读】,理解为对帧进行加权,得到 d 维的特征向量,即:

对于标签估计,首先学习embedding向量(姑且叫做嵌入向量)wi, 用于衡量未标签的特征序列和anchor集合间的关系。学习到第 i 个未标签序列的最近的 k 个anchors,即,k 远远小于 m,用这 k 个anchors来联合表示该未标签序列,即定义如下系数学习问题(Robust AnChor Embeding问题,RACE):

该公式的第一项为embedding term,旨在限制未标签项与anchors之间的差异;

第二项为smoothing term,旨在权重越大的anchor距离越近,其中 d<i> 为相似度,理解为到各个anchor的距离,⊙ 为对应元素相乘,该项计算为:

RACE问题将高维的CNN表征转为低维的权重映射,来降低算力损耗。

该问题为标准二次规划问题,优化方法:

具体求解见:

Efficient projections onto the l 1-ball for learning in high dimensions

Large graph construction for scalable semi-supervised learning

From point to set: Extend the learning of distance metrics

【待阅读】

(4)top-k count 标签估计:

如果两个视频序列属于同一个行人,那么它们在不同的衡量维度上需要非常接近。具体来说,如果未标签序列 xi 属于行人,需要满足两个条件:

① 应当是距离 xi 最近的部分anchor之一,定义为:

② 应当足够大。

定义预测的标签为:

其中表示中的排名。

【疑问:已经是最近的 k 个最近的anchor了,为什么还要判断是不是最近的 k' 个?】

Experimental Results

(1)实验设置:

① 数据集:PRID-2011,iLIDS-VID,MARS;

② 参数设置:dropou = 0.5;图片resize = 128*256;learning rate(MARS)= 0.003,learning rate(PRID-2011, iLIDS-VID) = 0.01,并每20个epoch下降0.1;k = 15,k’ = 1;λ = 0.1。

(2)实验结果:

论文阅读笔记(二十三)【ECCV2018】:Robust Anchor Embedding for Unsupervised Video Person Re-Identification in the Wild的更多相关文章

  1. 论文阅读笔记二十三:Learning to Segment Instances in Videos with Spatial Propagation Network(CVPR2017)

    论文源址:https://arxiv.org/abs/1709.04609 摘要 该文提出了基于深度学习的实例分割框架,主要分为三步,(1)训练一个基于ResNet-101的通用模型,用于分割图像中的 ...

  2. 论文阅读笔记二十七:Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks(CVPR 2016)

    论文源址:https://arxiv.org/abs/1506.01497 tensorflow代码:https://github.com/endernewton/tf-faster-rcnn 室友对 ...

  3. 论文阅读笔记三十三:Feature Pyramid Networks for Object Detection(FPN CVPR 2017)

    论文源址:https://arxiv.org/abs/1612.03144 代码:https://github.com/jwyang/fpn.pytorch 摘要 特征金字塔是用于不同尺寸目标检测中的 ...

  4. 论文阅读笔记二十五:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition(SPPNet CVPR2014)

    论文源址:https://arxiv.org/abs/1406.4729 tensorflow相关代码:https://github.com/peace195/sppnet 摘要 深度卷积网络需要输入 ...

  5. 论文阅读笔记二十四:Rich feature hierarchies for accurate object detection and semantic segmentation Tech report(R-CNN CVPR2014)

    论文源址:http://www.cs.berkeley.edu/~rbg/#girshick2014rcnn 摘要 在PASCAL VOC数据集上,最好的方法的思路是将低级信息与较高层次的上下文信息进 ...

  6. 论文阅读笔记二十一:MULTI-SCALE CONTEXT AGGREGATION BY DILATED CONVOLUTIONS(ICRL2016)

    论文源址:https://arxiv.org/abs/1511.07122 tensorflow Github:https://github.com/ndrplz/dilation-tensorflo ...

  7. 论文阅读笔记六十三:DeNet: Scalable Real-time Object Detection with Directed Sparse Sampling(CVPR2017)

    论文原址:https://arxiv.org/abs/1703.10295 github:https://github.com/lachlants/denet 摘要 本文重新定义了目标检测,将其定义为 ...

  8. 论文阅读笔记五十三:Libra R-CNN: Towards Balanced Learning for Object Detection(CVPR2019)

    论文原址:https://arxiv.org/pdf/1904.02701.pdf github:https://github.com/OceanPang/Libra_R-CNN 摘要 相比模型的结构 ...

  9. 论文阅读笔记四十三:DeeperLab: Single-Shot Image Parser(CVPR2019)

    论文原址:https://arxiv.org/abs/1902.05093 github:https://github.com/lingtengqiu/Deeperlab-pytorch 摘要 本文提 ...

随机推荐

  1. 遇到的一些在ie下的兼容问题和解决方案(ie10+)

    1,ie 10下实现水平垂直居中,不固定高度的话,正常的top:50%,left:50%,transform(translate(-50%,-50%)) 是不能实现的,ie下top:50%会失去效果. ...

  2. 了解EBP指针

    在寄存器里面有很多寄存器虽然他们的功能和使用没有任何的区别,但是在长期的编程和使用中,在程序员习惯中已经默认的给每个寄存器赋上了特殊的含义,比如:EAX一般用来做返回值,ECX用于记数等等.在win3 ...

  3. copy constructor和copy assignment operator的区别

    拷贝构造函数(copy constructor)被用来以一个对象来初始化同类型的另一个对象,拷贝赋值运算符(copy assignment operator)被用来将一个对象中的值拷贝到同类型的另一个 ...

  4. python笔记18(复习)

    今日内容 复习 内容详细 1.Python入门 1.1 环境的搭建 mac系统上搭建python环境. 环境变量的作用:方便在命令行(终端)执行可执行程序,将可执行程序所在的目录添加到环境变量,那么以 ...

  5. Java中正确终止线程的方法

    Thread类中有一个已经废弃的 stop() 方法,它可以终止线程,但由于它不管三七二十一,直接终止线程,所以被废弃了.比如,当线程被停止后还需要进行一些善后操作(如,关闭外部资源),使用这个方法就 ...

  6. C 语言宏定义函数编写时 do-while 的妙用和一些注意事项

    在 C 语言中,我们都知道可以用宏定义来编写函数,一般称为宏函数.如果一个宏函数比较复杂,那么在编写这样的宏函数是有一定技巧和注意事项的.文章给出一些我认为值得关注的地方,以及一些注意事项(个人建议) ...

  7. 搭建python运行环境

    一.下载Anaconda Anaconda是Python的包管理器和环境管理器 https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/ 参考:ht ...

  8. jquery deferred 转载

    阮一峰的网络日志 » 首页 » 档案 JavaScript http://www.ruanyifeng.com/blog/2011/08/a_detailed_explanation_of_jquer ...

  9. Go语言实现:【剑指offer】翻转单词顺序列

    该题目来源于牛客网<剑指offer>专题. 例如,"student. a am I",正确的句子应该是"I am a student." Go语言实 ...

  10. 入侵检测基本准则(Basic principles of intrusion detection)【v1.0】

    所谓“入侵检测”,顾名思义,就是对入侵行为的发觉.他通过对计算机网络或计算机系统中若干关键点收集信息并对其进行分析,从中发现网络或系统中是否有违反安全策略的行为和被攻击的迹象.” 但实际上,所谓的“违 ...