【Mysql的那些事】数据库之ORM操作
1:ORM的基础操作(必会)
<1> all(): 查询所有结果 <2> filter(**kwargs): 它包含了与所给筛选条件相匹配的对象 <3> get(**kwargs): 返回与所给筛选条件相匹配的对象,返回结果有且只有一个,如果符合筛选条件的对象超过一个或者没有都会抛出错误。 <4> exclude(**kwargs): 它包含了与所给筛选条件不匹配的对象 <5> values(*field): 返回一个ValueQuerySet——一个特殊的QuerySet,运行后得到的并不是一系列model的实例化对象,而是一个可迭代的字典序列 <6> values_list(*field): 它与values()非常相似,它返回的是一个元组序列,values返回的是一个字典序列 <7> order_by(*field): 对查询结果排序 <8> reverse(): 对查询结果反向排序,请注意reverse()通常只能在具有已定义顺序的QuerySet上调用(在model类的Meta中指定ordering或调用order_by()方法)。 <9> distinct(): 从返回结果中剔除重复纪录(如果你查询跨越多个表,可能在计算QuerySet时得到重复的结果。此时可以使用distinct(),注意只有在PostgreSQL中支持按字段去重。) <10> count(): 返回数据库中匹配查询(QuerySet)的对象数量。 <11> first(): 返回第一条记录 <12> last(): 返回最后一条记录 <13> exists(): 如果QuerySet包含数据,就返回True,否则返回False
2:返回QuerySet对象
all()
filter()
exclude()
order_by()
reverse()
distinct()
3:特殊的QuerySet
values() 返回一个可迭代的字典序列
values_list() 返回一个可迭代的元祖序列
4:返回具体对象的
get()
first()
last()
5:返回布尔值的方法有:
exists()
6:返回数字的方法有
count()
2:单表查询之双下划线
models.Tb1.objects.filter(id__lt=10, id__gt=1) # 获取id大于1 且 小于10的值 models.Tb1.objects.filter(id__in=[11, 22, 33]) # 获取id等于11、22、33的数据
models.Tb1.objects.exclude(id__in=[11, 22, 33]) # not in models.Tb1.objects.filter(name__contains="ven") # 获取name字段包含"ven"的
models.Tb1.objects.filter(name__icontains="ven") # icontains大小写不敏感 models.Tb1.objects.filter(id__range=[1, 3]) # id范围是1到3的,等价于SQL的bettwen and 类似的还有:startswith,istartswith, endswith, iendswith date字段还可以:
models.Class.objects.filter(first_day__year=2017)
3:ForeignKey操作
正向查找
book_obj = models.Book.objects.first() # 第一本书对象
print(book_obj.publisher) # 得到这本书关联的出版社对象
print(book_obj.publisher.name) # 得到出版社对象的名称
跨表查询
models.Book.objects.values_list("publisher__name") 反向操作
对象查找:obj.表名_set
publisher_obj = models.Publisher.objects.first() # 找到第一个出版社对象
books = publisher_obj.book_set.all() # 找到第一个出版社出版的所有书
titles = books.values_list("title") # 找到第一个出版社出版的所有书的书名
字段查找:表名__字段
titles = models.Publisher.objects.values_list("book__title")
4:ManyToManyField
"关联管理器"是在一对多或者多对多的关联上下文中使用的管理器。
它存在于下面两种情况:
- 外键关系的反向查询
- 多对多关联关系
简单来说就是当 点后面的对象 可能存在多个的时候就可以使用以下的方法。
create()
models.Author.objects.first().book_set.create(title="番茄物语") add()
models.Book.objects.first().authors.add(對象) #添加对象
models.Book.objects.first().authors.add(*[1, 2]) #添加ID set()#更新
book_obj = models.Book.objects.first()
book_obj.authors.set([2, 3])#更新ID remove()#移除对象
book_obj = models.Book.objects.first()
book_obj.authors.remove(3) clear() #移除一切对象
book_obj = models.Book.objects.first()
book_obj.authors.clear() 注意:
对于所有类型的关联字段,add()、create()、remove()和clear(),set()都会马上更新数据库。换句话说,在关联的任何一端,都不需要再调用save()方法。
5:聚合查询和分组查询
聚合:
aggregate()是QuerySet 的一个终止子句,意思是说,它返回一个包含一些键值对的字典。键的名称是聚合值的标识符,值是计算出来的聚合值。键的名称是按照字段和聚合函数的名称自动生成出来的。
用到的内置函数:
from django.db.models import Avg, Sum, Max, Min, Count >>> from django.db.models import Avg, Sum, Max, Min, Count
>>> models.Book.objects.all().aggregate(Avg("price")) #平均值 average_price=Avg('price')指定名称{'average_price': 13.233333}
{'price__avg': 13.233333}
如果你希望生成不止一个聚合,你可以向aggregate()子句中添加另一个参数。所以,如果你也想知道所有图书价格的最大值和最小值,可以这样查询:
>>> models.Book.objects.all().aggregate(Avg("price"), Max("price"), Min("price"))
{'price__avg': 13.233333, 'price__max': Decimal('19.90'), 'price__min': Decimal('9.90')}
分组:
实例1:
from django.db.models import Avg
Employee.objects.values("dept").annotate(avg=Avg("salary").values(dept, "avg") #annotate前面是分组的字段 实例2:
from django.db.models import Avg
models.Dept.objects.annotate(avg=Avg("employee__salary")).values("name", "avg")
6:F查询和Q查询
F查询:
Django 提供 F() 来做这样的比较。F() 的实例可以在查询中引用字段,来比较同一个 model 实例中两个不同字段的值。(查询字段数据)
示例1;查询评论数大于收藏数的书籍
from django.db.models import F
models.Book.objects.filter(commnet_num__gt=F('keep_num')) Django 支持 F() 对象之间以及 F() 对象和常数之间的加减乘除和取模的操作。
models.Book.objects.filter(commnet_num__lt=F('keep_num')*2) 示例2:修改操作也可以使用F函数,比如将每一本书的价格提高30元(常用)
models.Book.objects.all().update(price=F("price")+30) 示例3:改char字段——如:把所有书名后面加上(第一版)
>>> from django.db.models.functions import Concat
>>> from django.db.models import Value
>>> models.Book.objects.all().update(title=Concat(F("title"), Value("("), Value("第一版"), Value(")")))
Q查询:
示例1:查询作者名是小仙女或小魔女的
models.Book.objects.filter(Q(authors__name="小仙女")|Q(authors__name="小魔女")) 示例2:查询出版年份是2017或2018,书名中带物语的所有书
>>> models.Book.objects.filter(Q(publish_date__year=2018) | Q(publish_date__year=2017), title__icontains="物语")
<QuerySet [<Book: 番茄物语>, <Book: 香蕉物语>, <Book: 橘子物语>]>
7.QuerySet方法大全
##################################################################
# PUBLIC METHODS THAT ALTER ATTRIBUTES AND RETURN A NEW QUERYSET #
################################################################## def all(self)
# 获取所有的数据对象 def filter(self, *args, **kwargs)
# 条件查询
# 条件可以是:参数,字典,Q def exclude(self, *args, **kwargs)
# 条件查询
# 条件可以是:参数,字典,Q def select_related(self, *fields)
性能相关:表之间进行join连表操作,一次性获取关联的数据。 总结:
1. select_related主要针一对一和多对一关系进行优化。
2. select_related使用SQL的JOIN语句进行优化,通过减少SQL查询的次数来进行优化、提高性能。 def prefetch_related(self, *lookups)
性能相关:多表连表操作时速度会慢,使用其执行多次SQL查询在Python代码中实现连表操作。 总结:
1. 对于多对多字段(ManyToManyField)和一对多字段,可以使用prefetch_related()来进行优化。
2. prefetch_related()的优化方式是分别查询每个表,然后用Python处理他们之间的关系。 def annotate(self, *args, **kwargs)
# 用于实现聚合group by查询 from django.db.models import Count, Avg, Max, Min, Sum v = models.UserInfo.objects.values('u_id').annotate(uid=Count('u_id'))
# SELECT u_id, COUNT(ui) AS `uid` FROM UserInfo GROUP BY u_id v = models.UserInfo.objects.values('u_id').annotate(uid=Count('u_id')).filter(uid__gt=1)
# SELECT u_id, COUNT(ui_id) AS `uid` FROM UserInfo GROUP BY u_id having count(u_id) > 1 v = models.UserInfo.objects.values('u_id').annotate(uid=Count('u_id',distinct=True)).filter(uid__gt=1)
# SELECT u_id, COUNT( DISTINCT ui_id) AS `uid` FROM UserInfo GROUP BY u_id having count(u_id) > 1 def distinct(self, *field_names)
# 用于distinct去重
models.UserInfo.objects.values('nid').distinct()
# select distinct nid from userinfo 注:只有在PostgreSQL中才能使用distinct进行去重 def order_by(self, *field_names)
# 用于排序
models.UserInfo.objects.all().order_by('-id','age') def extra(self, select=None, where=None, params=None, tables=None, order_by=None, select_params=None)
# 构造额外的查询条件或者映射,如:子查询 Entry.objects.extra(select={'new_id': "select col from sometable where othercol > %s"}, select_params=(1,))
Entry.objects.extra(where=['headline=%s'], params=['Lennon'])
Entry.objects.extra(where=["foo='a' OR bar = 'a'", "baz = 'a'"])
Entry.objects.extra(select={'new_id': "select id from tb where id > %s"}, select_params=(1,), order_by=['-nid']) def reverse(self):
# 倒序
models.UserInfo.objects.all().order_by('-nid').reverse()
# 注:如果存在order_by,reverse则是倒序,如果多个排序则一一倒序 def defer(self, *fields):
models.UserInfo.objects.defer('username','id')
或
models.UserInfo.objects.filter(...).defer('username','id')
#映射中排除某列数据 def only(self, *fields):
#仅取某个表中的数据
models.UserInfo.objects.only('username','id')
或
models.UserInfo.objects.filter(...).only('username','id') def using(self, alias):
指定使用的数据库,参数为别名(setting中的设置) ##################################################
# PUBLIC METHODS THAT RETURN A QUERYSET SUBCLASS #
################################################## def raw(self, raw_query, params=None, translations=None, using=None):
# 执行原生SQL
models.UserInfo.objects.raw('select * from userinfo') # 如果SQL是其他表时,必须将名字设置为当前UserInfo对象的主键列名
models.UserInfo.objects.raw('select id as nid from 其他表') # 为原生SQL设置参数
models.UserInfo.objects.raw('select id as nid from userinfo where nid>%s', params=[12,]) # 将获取的到列名转换为指定列名
name_map = {'first': 'first_name', 'last': 'last_name', 'bd': 'birth_date', 'pk': 'id'}
Person.objects.raw('SELECT * FROM some_other_table', translations=name_map) # 指定数据库
models.UserInfo.objects.raw('select * from userinfo', using="default") ################### 原生SQL ###################
from django.db import connection, connections
cursor = connection.cursor() # cursor = connections['default'].cursor()
cursor.execute("""SELECT * from auth_user where id = %s""", [1])
row = cursor.fetchone() # fetchall()/fetchmany(..) def values(self, *fields):
# 获取每行数据为字典格式 def values_list(self, *fields, **kwargs):
# 获取每行数据为元祖 def dates(self, field_name, kind, order='ASC'):
# 根据时间进行某一部分进行去重查找并截取指定内容
# kind只能是:"year"(年), "month"(年-月), "day"(年-月-日)
# order只能是:"ASC" "DESC"
# 并获取转换后的时间
- year : 年-01-01
- month: 年-月-01
- day : 年-月-日 models.DatePlus.objects.dates('ctime','day','DESC') def datetimes(self, field_name, kind, order='ASC', tzinfo=None):
# 根据时间进行某一部分进行去重查找并截取指定内容,将时间转换为指定时区时间
# kind只能是 "year", "month", "day", "hour", "minute", "second"
# order只能是:"ASC" "DESC"
# tzinfo时区对象
models.DDD.objects.datetimes('ctime','hour',tzinfo=pytz.UTC)
models.DDD.objects.datetimes('ctime','hour',tzinfo=pytz.timezone('Asia/Shanghai')) """
pip3 install pytz
import pytz
pytz.all_timezones
pytz.timezone(‘Asia/Shanghai’)
""" def none(self):
# 空QuerySet对象 ####################################
# METHODS THAT DO DATABASE QUERIES #
#################################### def aggregate(self, *args, **kwargs):
# 聚合函数,获取字典类型聚合结果
from django.db.models import Count, Avg, Max, Min, Sum
result = models.UserInfo.objects.aggregate(k=Count('u_id', distinct=True), n=Count('nid'))
===> {'k': 3, 'n': 4} def count(self):
# 获取个数 def get(self, *args, **kwargs):
# 获取单个对象 def create(self, **kwargs):
# 创建对象 def bulk_create(self, objs, batch_size=None):
# 批量插入
# batch_size表示一次插入的个数
objs = [
models.DDD(name='r11'),
models.DDD(name='r22')
]
models.DDD.objects.bulk_create(objs, 10) def get_or_create(self, defaults=None, **kwargs):
# 如果存在,则获取,否则,创建
# defaults 指定创建时,其他字段的值
obj, created = models.UserInfo.objects.get_or_create(username='root1', defaults={'email': '','u_id': 2, 't_id': 2}) def update_or_create(self, defaults=None, **kwargs):
# 如果存在,则更新,否则,创建
# defaults 指定创建时或更新时的其他字段
obj, created = models.UserInfo.objects.update_or_create(username='root1', defaults={'email': '','u_id': 2, 't_id': 1}) def first(self):
# 获取第一个 def last(self):
# 获取最后一个 def in_bulk(self, id_list=None):
# 根据主键ID进行查找
id_list = [11,21,31]
models.DDD.objects.in_bulk(id_list) def delete(self):
# 删除 def update(self, **kwargs):
# 更新 def exists(self):
# 是否有结果
8:logging日志打印原生sql语句(复制到setting最下面)
LOGGING = {
'version': 1,
'disable_existing_loggers': False,
'handlers': {
'console':{
'level':'DEBUG',
'class':'logging.StreamHandler',
},
},
'loggers': {
'django.db.backends': {
'handlers': ['console'],
'propagate': True,
'level':'DEBUG',
},
}
}
9:在Python脚本中调用Django环境
import os if __name__ == '__main__':
os.environ.setdefault("DJANGO_SETTINGS_MODULE", "BMS.settings")
import django
django.setup() from app01 import models #app01是你的应用 books = models.Book.objects.all()
print(books)
【Mysql的那些事】数据库之ORM操作的更多相关文章
- Django中的app及mysql数据库篇(ORM操作)
Django常见命令 在Django的使用过程中需要使用命令让Django进行一些操作,例如创建Django项目.启动Django程序.创建新的APP.数据库迁移等. 创建Django项目 一把我们都 ...
- Django/MySql数据库基本操作&ORM操作
数据库配置: #第一步在settings里面 DATABASES = { 'default': { 'ENGINE': 'django.db.backends.mysql', 'NAME':'dbna ...
- MySql 新建用户与数据库的实际操作步骤
以下的文章主要讲述的是MySql 新建用户的创建.新建数据库的实际操作步骤以及用户如何进行授权和删除用户的实际操作方案.还有对修改密码的实际操作,以下就是正文的主要内容的创建. 1.MySql 新建用 ...
- MySQL快速回顾:数据库和表操作
前提要述:参考书籍<MySQL必知必会> 利用空闲时间快速回顾一些数据库基础. 4.1 连接 在最初安装MySQL,可能会要求你输入一个管理登录(通常为root)和一个口令(密码). 连接 ...
- golang利用beego框架orm操作mysql
GO引入orm框架操作mysql 在beego框架中引入orm操作mysql需要进行的步骤: 第一步:导入orm框架依赖,导入mysql数据库的驱动依赖 import ( "github.c ...
- python【第十二篇下】操作MySQL数据库以及ORM之 sqlalchemy
内容一览: 1.Python操作MySQL数据库 2.ORM sqlalchemy学习 1.Python操作MySQL数据库 2. ORM sqlachemy 2.1 ORM简介 对象关系映射(英语: ...
- .net core使用orm操作mysql数据库
Mysql数据库由于其体积小.速度快.总体拥有成本低,尤其是开放源码这一特点,许多中小型网站为了降低网站总体拥有成本而选择了MySQL作为网站数据库.MySQL是一个多用户.多线程的关系型数据库管理系 ...
- Flask学习笔记:数据库ORM操作MySQL+pymysql/mysql-python+SQLAlchemy/Flask-SQLAlchemy
Python中使用sqlalchemy插件可以实现ORM(Object Relationship Mapping,模型关系映射)框架,而Flask中的flask-sqlalchemy其实就是在sqla ...
- DjangoMTV模型之model层——ORM操作数据库(基本增删改查)
Django的数据库相关操作 对象关系映射(英语:(Object Relational Mapping,简称ORM),是一种程序技术,用于实现面向对象编程语言里不同类型系统的数据之间的转换.从效果上说 ...
随机推荐
- TCP、UDP区别
个人认为,用户层Socket的TCP和UDP编程,区别并不大. 最大的区别,或者说,唯一的区别,似乎就是TCP客户端中断连接之后,TCP会得到一个应答. 但是如果用UDP来实现TCP,似乎也不 ...
- Hadoop Serialization -- hadoop序列化详解 (2)【Text,BytesWritable,NullWritable】
回顾: 回顾序列化,其实原书的结构很清晰,我截图给出书中的章节结构: 序列化最主要的,最底层的是实现writable接口,wiritable规定读和写的游戏规则 (void write(DataOut ...
- 如何修改MyEclipse的SVN账户和密码
如何修改MyEclipse的SVN账户和密码呢? 操作方法:删除C:\Users\Administrator\AppData\Roaming\Subversion\auth\svn.simple文件夹 ...
- 阿里云应用高可用服务 AHAS 流控降级实现 SQL 自动防护功能
在影响系统稳定性的各种因素中,慢 SQL 是相对比较致命的,可能会导致 CPU.LOAD 异常.系统资源耗尽.线上生产环境出现慢 SQL 往往有很多原因: 硬件问题.如网络速度慢,内存不足,I/O 吞 ...
- JS获取页面,元素,窗口和返回页面,元素,窗口的宽高以及滚动值
jquery获取页面,元素,窗口的宽高以及滚动值 //获取浏览器显示区域(可视区域)的高度 : $(window).height(); //获取浏览器显示区域(可视区域)的宽度 : $(window) ...
- Mocha测试
mocha中文名叫做摩卡,是javascript测试的一种常见手段. 其他的类似的测试还有jasmine.karma.tape等. 1. 测试脚本怎么写 // add.js function add( ...
- nginx日志字段解析
许包含的变量注释如下: $remote_addr, $http_x_forwarded_for 记录客户端IP地址 $remote_user 记录客户端用户名称 $request 记录请求的URL和H ...
- Neo4j与ElasticSearch数据同步
Neo4j与ElasticSearch数据同步 针对节点删除,加了一些逻辑,代码地址 背景 需要强大的检索功能,所有需要被查询的数据都在neo4j. 方案 在Server逻辑中直接编写.后端有一个St ...
- SpringBooot-基础<2>-POM.xml配置
SpringBooot-基础<2>-POM.xml配置 项目创建完成后,需要配置pom.xml文件. pom.xml里面的配置,按需进行添加,这里提供一份参考,后面做笔记会都用到. < ...
- 2019.9.28 csp-s模拟测试54 反思总结
咕咕咕的冲动如此强烈x T1x: 看完题目想了想,感觉把gcd不为1的强行放在一组,看作一个连通块,最后考虑连通块之间的组合方式就可以了. 然后维护这个连通块可以写并查集可以连边跑dfs怎么着都行… ...