P2903 [USACO08MAR]麻烦的干草打包机The Loathesome Hay Baler

题目描述

Farmer John has purchased the world's most loathesome hay baler. Instead of having a drive-roller that drives maybe an idler roller that drives the power take-off for the baler, it has N rollers (2 <= N <= 1050) which drive and are driven by various rollers.

FJ has meticulously cataloged data for each roller i: X_i,Y_i are the center of the roller (-5000 <= X_i <= 5000; -5000 <= Y_i <= 5000); R_i is the roller's radius (3 <= R_i <= 800). The drive-roller is located at 0,0; the baler power take-off is located at X_t,Y_t (numbers supplied in the input).

The drive-roller turns clockwise at 10,000 revolutions per hour. Your job is to determine the speeds of all the rollers that are in the power-train: from the drive-roller through the power take-off roller. Rollers that do not transfer power to the take-off roller are to be ignored. A roller of radius Rd that is turning at S rph and driving another roller of radius Rx will cause the second roller to turn at the speed -S*Rd/Rx (where the sign denotes whether the roller is turning clockwise or counterclockwise (anticlockwise for our British friends)).

Determine the power-train path and report the sum of the absolute values of all those rollers' speeds. All the rollers in the input set except the driver-roller are driven by some other roller; power is never transferred to a roller from more than one other roller.

Report your answer as an integer that is the truncated value after summing all the speeds.

Farmer John新买的干草打包机的内部结构大概算世界上最混乱的了,它不象普通的机器一样有明确的内部传动装置,而是,N (2 <= N <= 1050)个齿轮互相作用,每个齿轮都可能驱动着多个齿轮。 FJ记录了对于每个齿轮i,记录了它的3个参数:X_i,Y_i表示齿轮中心的位置坐标(-5000 <= X_i <= 5000; -5000 <= Y_i <= 5000);R_i表示该齿轮的半径(3 <= R_i <= 800)。

驱动齿轮的位置为0,0,并且FJ也知道最终的工作齿轮位于X_t,Y_t。 驱动齿轮顺时针转动,转速为10,000转/小时。你的任务是,确定传动序列中所有齿轮的转速。传动序列的定义为,能量由驱动齿轮传送到工作齿轮的过程中用到的所有齿轮的集合。对能量传送无意义的齿轮都应当被忽略。

在一个半径为Rd,转速为S转/每小时的齿轮的带动下,与它相接的半径为Rx的齿轮的转速将为-S*Rd/Rx转/小时。S前的负号的意思是,一个齿轮带动的另一个齿轮的转向会与它的转向相反。

FJ只对整个传动序列中所有齿轮速度的绝对值之和感兴趣,你的任务也就相应转化成求这个值。机器中除了驱动齿轮以外的所有齿轮都被另外某个齿轮带动,并且不会出现2个不同的齿轮带动同一个齿轮的情况。

输入输出格式

输入格式:

  • Line 1: Three space-separated integers: N, X_t, and Y_t

  • Lines 2..N+1: Line i+1 describes roller i's properties: X_i, Y_i, and R_i

输出格式:

  • Line 1: A single integer that is the truncated version of the sum of
    the absolute value of the speeds of the rollers in the power-train
    including the drive-roller, all the driven rollers, and the power
    take-off roller.

输入输出样例

输入样例#1:

4 32 54
0 0 10
0 30 20
32 54 20
-40 30 20
输出样例#1:

20000

说明

Four rollers: the drive-roller at 0,0 with radius 10. It drives the roller above it at 0,30 with radius 20. That roller drives both the power take-off roller at 32,54 (r=20) and a random roller (not in the power train) at -40,30 (r=20).

Roller Radius Speed

1 (0,0) 10 10,000

2 (0,30) 20 -5,000

3 (32,54) 20 5,000


Sum of abs values: 20,000

bfs一下就可以了。

注意几个问题:

1、相切才能联动!

2、精度!用double!

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <algorithm>
#include <queue>
#include <cmath> const int sx = 1;
const int sy = 1;
const int K = 0;
const int MAXN = 1050 + 10; int n,ex,ey;
int pre[MAXN];
int start;
int b[MAXN]; struct T
{
int x,y,r;
double energy, s;
}circle[MAXN]; inline bool IsPre(T& a, T& b)
{
int d = (a.x - b.x)*(a.x - b.x)+ (a.y - b.y)*(a.y - b.y);
int sum = a.r + b.r;
return d == sum*sum;
} void bfs()
{
std::queue<T> q;
q.push(circle[start]);
b[start] = true;
while(!q.empty())
{
T temp = q.front();
q.pop();
for(int i = 1;i <= n;i ++)
{
if( !b[i] && IsPre(circle[i], temp))
{
b[i] = true;
circle[i].s = temp.s * temp.r / circle[i].r;
circle[i].energy = circle[i].s + temp.energy;
if(circle[i].x == ex && circle[i].y == ey)
{
printf("%d", (int)circle[i].energy);
return ;
}
q.push(circle[i]);
}
}
}
} int main()
{
scanf("%d%d%d", &n ,&ex, &ey);
ex += K;
ey += K;
for(int i = 1;i <= n;i ++)
{
scanf("%d%d%d", &circle[i].x, &circle[i].y, &circle[i].r);
circle[i].x += K;
circle[i].y += K;
if(circle[i].x == K && circle[i].y == K)
{
start = i;
circle[i].s = 10000;
circle[i].energy = 10000;
}
}
bfs();
return 0;
}

洛谷P2903 [USACO08MAR]麻烦的干草打包机The Loathesome Hay Baler的更多相关文章

  1. bzoj1615 / P2903 [USACO08MAR]麻烦的干草打包机The Loathesome Hay Baler

    P2903 [USACO08MAR]麻烦的干草打包机The Loathesome Hay Baler 细节题.$O(n^{2})$的$bfs$可过. #include<iostream> ...

  2. P2903 [USACO08MAR]麻烦的干草打包机The Loathesome Hay Baler

    传送门 题目问的是从出发点一直跑到终点的一条链上所有齿轮的速度和 其他的不用考虑 直接搜就好了 注意求的是绝对值之和,不是和的绝对值,所以不用考虑方向问题 注意 N<=1050 数组不要只开10 ...

  3. BZOJ 1615: [Usaco2008 Mar]The Loathesome Hay Baler麻烦的干草打包机

    题目 1615: [Usaco2008 Mar]The Loathesome Hay Baler麻烦的干草打包机 Time Limit: 5 Sec  Memory Limit: 64 MB Desc ...

  4. 1615: [Usaco2008 Mar]The Loathesome Hay Baler麻烦的干草打包机

    1615: [Usaco2008 Mar]The Loathesome Hay Baler麻烦的干草打包机 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit:  ...

  5. bzoj1615 [Usaco2008 Mar]The Loathesome Hay Baler麻烦的干草打包机

    Description Farmer John新买的干草打包机的内部结构大概算世界上最混乱的了,它不象普通的机器一样有明确的内部传动装置,而是,N (2 <= N <= 1050)个齿轮互 ...

  6. 洛谷P2900 [USACO08MAR]土地征用Land Acquisition(动态规划,斜率优化,决策单调性,线性规划,单调队列)

    洛谷题目传送门 用两种不一样的思路立体地理解斜率优化,你值得拥有. 题意分析 既然所有的土地都要买,那么我们可以考虑到,如果一块土地的宽和高(其实是蒟蒻把长方形立在了平面上)都比另一块要小,那么肯定是 ...

  7. 【BZOJ】1615: [Usaco2008 Mar]The Loathesome Hay Baler麻烦的干草打包机(模拟+bfs)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1615 这种题..... #include <cstdio> #include <c ...

  8. bzoj1615 麻烦的干草打包机 BFS

    Description Farmer John新买的干草打包机的内部结构大概算世界上最混乱的了,它不象普通的机器一样有明确的内部传动装置,而是,N (2 <= N <= 1050)个齿轮互 ...

  9. 洛谷 P2900 [USACO08MAR]土地征用Land Acquisition 解题报告

    P2900 [USACO08MAR]土地征用Land Acquisition 题目描述 约翰准备扩大他的农场,眼前他正在考虑购买N块长方形的土地.如果约翰单买一块土 地,价格就是土地的面积.但他可以选 ...

随机推荐

  1. SpringBoot学习笔记(八):SpringBoot启动端口+访问路、SpringBoot配置文件yml、SpringBoot多环境区分、SpringBoot打包发布

    SpringBoot启动端口+访问路径 配置文件: server.port=9090 server.context-path=/springboot 现在只能用http://127.0.0.1:909 ...

  2. Struts2OGNL

    OGNL: 什么是OGNL  Object Graph Navigation Language 开源项目,取代页面中Java脚本,简化数据访问 和EL同属于表达式语言,但功能更为强大  OGNL在St ...

  3. java基础之Character类概述

    Character 类 在对象中包装一个基本类型 char 的值 此外,该类提供了几种方法,以确定字符的类别(小写字母,数字,等等),并将字符从大写转换成小写,反之亦然 构造方法 public Cha ...

  4. vue 报错:Cannot read property '_wrapper' of undefined

    我的情况是@click="xx" ,而xx函数未定义

  5. ckeditor图片上传二三事

    最近实验室要用ckeditor,踩了几个小坑记录下. 1.出现iframe跨域问题 response.setHeader("X-Frame-Options", "SAME ...

  6. Linux-c glib库hash表GHashTable介绍

    百度云glib  链接:https://pan.baidu.com/s/1W9qdlMKWRKIFykenTVuWNQ 密码:ol6y hash表是一种提供key-value访问的数据结构,通过指定的 ...

  7. Python-可变类型与不可变类型

    可变类型 可以变化的,列表和字典 利用id()函数 查看内存地址 内存地址变化即不可变类型. 内存地址不变化即可变类型 不可变类型 不可以变化的,字符串和数字 字符串内置方法 索引取值 索引切片 成员 ...

  8. js算法之把一个数组按照指定的数组大小分割成若干个数组块

    题目描述:     把一个数组arr按照指定的数组大小size分割成若干个数组块. 例如:   chunk([1,2,3,4],2)=[[1,2],[3,4]];   chunk([1,2,3,4,5 ...

  9. 提示框插件layer的使用讲解

    官方网站:http://layer.layui.com/ 在页面中引入: <script src="js/layer-v3.0.3/layer/layer.js">&l ...

  10. springboot核心技术(二)-----自动配置原理、日志

    自动配置原理 配置文件能配置的属性参照 1.自动配置原理: 1).SpringBoot启动的时候加载主配置类,开启了自动配置功能 @EnableAutoConfiguration 2).@Enable ...