题目

题目大意

求\(N\)个点的简单无向图的方案数(有编号)。

结果对\(1004535809\)取模。


思考历程

感觉这个问题非常经典。

当时想到了一堆式子,但都觉得可能会有重和漏,于是弃掉了……

最终打了个纯得不能再纯的暴力,在本地开O3,将\(1\)到\(8\)的答案都跑出来,打了个表……


正解

正解的一部分似乎被我错过了。

显然是DP,设\(f_i\)表示大小为\(i\)的连通图个数,\(g_i\)表示大小为\(i\)的所有图的个数。

显然\(g_i=2^{C_n^2}\)

接下来是转移:用总体情况减去不连通的情况。对于不连通的情况,我们固定\(i\)不动,\(i\)在一个大小为\(j\)的连通块内,剩下的\(i-j\)个点以任意方式排列,但就是不与\(i\)所在的连通块相连。

综上所述,\(f_i=g_i-\sum_{j=1}^{i-1}C_{i-1}^{j-1}f_jg_{i-j}\)

为什么不重,为什么不漏?

直觉告诉我这是个感性理解的东西……不好用语言描述啊……

接下来化一下式子:\(f_i=g_i-(i-1)!\sum_{j=1}^{i-1}\frac{f_j}{(j-1)!}\frac{g_{i-j}}{(i-j)!}\)

设\(F_i=\frac{f_i}{(i-1)!} \ G_i=\frac{g_i}{i!}\),\(H_i=\sum_{j=1}^{i-1}F_jG_{i-j}\)

我们发现这是一个卷积的形式!

然后就是一个分治FFT(NTT)……(当然我之前不会)

不过实际上思想也比较简单,就是用CDQ分治的思想,用左边的东西计算对右边的贡献。

具体来说,用\([l,mid]\)影响\([mid+1,r]\),

也就是\((F_l,F_{l+1},...,F_{mid})\)乘上\((G_1,G_2,...,G_{r-l})\)。注意位置的对应关系……(想当初这东西调了我很久)

时间复杂度自然是\(O(n\lg^2 n)\)的。

当然,这道题用NTT当然更好。因为FFT有可怕的精度问题啊……

\(1004535809\)是NTT的模数,原根为\(3\)。取\(n\)次单位根的时候就直接\(3^\frac{mo-1}{n} \mod mo\)就是了。

NTT和FFT几乎一模一样,具体的理论部分,我想我就懒得涉猎了……


代码

可能和我讲的不太一样。在分治之前,我开到了\(2\)的幂……但似乎没个卵用……

using namespace std;
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#define PI 3.14159263538979
#define mo 1004535809
#define N 131073
long long my_pow(long long x,long long y){
long long res=1;
for (;y;y>>=1,x=x*x%mo)
if (y&1)
res=res*x%mo;
return res;
}
int n,m;
long long fac[N],inv[N];
long long f[N],g[N],h[N];
int M;
long long a[N*4],b[N*4],c[N*4];
int rev[N*4];
inline void ntt(long long*a,int flag){
for (int i=0;i<M;++i)
if (i<rev[i])
swap(a[i],a[rev[i]]);
for (int i=1;i<M;i<<=1){
long long wn=my_pow(3,(mo-1)/(i*2));
if (flag==-1)
wn=my_pow(wn,mo-2);
for (int j=0;j<M;j+=i<<1){
long long wnk=1;
for (int k=j;k<j+i;++k,wnk=wnk*wn%mo){
long long x=a[k],y=wnk*a[k+i]%mo;
a[k]=(x+y)%mo;
a[k+i]=(x-y+mo)%mo;
}
}
}
long long invM=my_pow(M,mo-2);
if (flag==-1)
for (int i=0;i<M;++i)
a[i]=a[i]*invM%mo;
}
inline void calc(){
for (int i=0;i<M;++i){
int tmp=0;
for (int j=i,k=0;1<<k<M;j>>=1,++k)
tmp=tmp<<1|j&1;
rev[i]=tmp;
}
ntt(a,1),ntt(b,1);
for (int i=0;i<M;++i)
c[i]=a[i]*b[i];
ntt(c,-1);
}
void dfs(int l,int r){
if (l==r){
f[l]=(g[l]-h[l]%mo*fac[l-1]%mo+mo)%mo;
return;
}
int mid=l+r>>1;
dfs(l,mid);
for (M=1;M<=3*(mid-l);M<<=1);
memset(a,0,sizeof(long long)*M);
memset(b,0,sizeof(long long)*M);
for (int i=0;i<mid-l+1;++i)
a[i]=f[l+i]*inv[l+i-1]%mo;
for (int i=0;i<mid-l+mid-l+1;++i)
b[i]=g[i+1]*inv[i+1]%mo;
calc();
for (int i=mid-l;i<mid-l+mid-l+1;++i)
h[l+i+1]+=c[i];
dfs(mid+1,r);
}
int main(){
scanf("%d",&n);
fac[0]=1,inv[0]=1;
for (int i=1;i<=n;++i)
fac[i]=fac[i-1]*i%mo,inv[i]=my_pow(fac[i],mo-2);
for (int i=1;i<=n;++i)
g[i]=my_pow(2,1ll*i*(i-1)>>1);
for (m=1;m<n;m*=2);
dfs(1,m);
printf("%lld\n",f[n]);
return 0;
}

总结

DP能力还是要加强啊……

[JZOJ3303] 【集训队互测2013】城市规划的更多相关文章

  1. [JZOJ3302] 【集训队互测2013】供电网络

    题目 题目大意 给你一个有向图,每个点开始有一定的水量(可能为负数),可以通过边流到其它点. 每条边的流量是有上下界的. 每个点的水量可以增加或减少(从外界补充或泄出到外界),但是需要费用,和增加(减 ...

  2. 【loj2461】【2018集训队互测Day 1】完美的队列

    #2461. 「2018 集训队互测 Day 1」完美的队列 传送门: https://loj.ac/problem/2461 题解: 直接做可能一次操作加入队列同时会弹出很多数字,无法维护:一个操作 ...

  3. 【2018集训队互测】【XSY3372】取石子

    题目来源:2018集训队互测 Round17 T2 题意: 题解: 显然我是不可能想出来的……但是觉得这题题解太神了就来搬(chao)一下……Orzpyz! 显然不会无解…… 为了方便计算石子个数,在 ...

  4. 洛谷 P4463 - [集训队互测 2012] calc(多项式)

    题面传送门 & 加强版题面传送门 竟然能独立做出 jxd 互测的题(及其加强版),震撼震撼(((故写题解以祭之 首先由于 \(a_1,a_2,\cdots,a_n\) 互不相同,故可以考虑求出 ...

  5. UOJ#191. 【集训队互测2016】Unknown 点分治 分治 整体二分 凸包 计算几何

    原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ191.html 题目传送门 - UOJ191 题意 自行移步集训队论文2016中罗哲正的论文. 题解 自行 ...

  6. LOJ3069. 「2019 集训队互测 Day 1」整点计数(min_25筛)

    题目链接 https://loj.ac/problem/3069 题解 复数真神奇. 一句话题意:令 \(f(x)\) 表示以原点 \((0, 0)\) 为圆心,半径为 \(x\) 的圆上的整点数量, ...

  7. UOJ#191. 【集训队互测2016】Unknown

    题意:维护一个数列,每个元素是个二维向量,每次可以在后面加一个元素或者删除一个元素.给定P(x,y),询问对于[l,r]区间内的元素$S_i$,$S_i \times P$的最大值是多少. 首先简单地 ...

  8. 【集训队互测2015】Robot

    题目描述 http://uoj.ac/problem/88 题解 维护两颗线段树,维护最大值和最小值,因为每次只有单点查询,所以可以直接在区间插入线段就可以了. 注意卡常,不要写STL,用链表把同类修 ...

  9. EZ 2018 05 06 NOIP2018 慈溪中学集训队互测(五)

    享受爆零的快感 老叶本来是让初三的打的,然后我SB的去凑热闹了 TM的T2写炸了(去你妹的优化),T1连-1的分都忘记判了,T3理所当然的不会 光荣革命啊! T1 思维图论题,CHJ dalao给出了 ...

随机推荐

  1. Win10下安装erl和RabbitMQ踩坑【版本不兼容】

    版本不兼容 erl:otp_win64_21.0.1.exe rabbitmq:rabbitmq-server-3.8.1.exe(2019.12.06时最新版) 根据官方文档的匹配表:https:/ ...

  2. 在vue中获取不到canvas对象? 两种解决办法。

    1. mounted 钩子函数 初次肯定获取到id 2. 如果canvas父级用到了v-if 请改成v-show ,vue Dom节点 重新渲染导致methods 方法获取不到对象.

  3. C语言结构体和函数

    #include <stdio.h> struct Person { char *name; }; void change1(struct Person p); void change2( ...

  4. 标准 IO fprintf 与 sprintf 函数使用

    函数原型 fprintf int fprintf(FILE *stream, const char *format, ...);  把数据写到流中 int sprintf(char *str, con ...

  5. memset函数及其用法,C语言memset函数详解

    在前面不止一次说过,定义变量时一定要进行初始化,尤其是数组和结构体这种占用内存大的数据结构.在使用数组的时候经常因为没有初始化而产生“烫烫烫烫烫烫”这样的野值,俗称“乱码”. 每种类型的变量都有各自的 ...

  6. html标签注意事项

    1,关于媒体的video标签 在同一个页面上如果有多个video标签,并且初始化都赋值,则video不会播放, 解决办法,用计时器每隔50ms给后面的video标签设置src,设置完为止 2,关于ch ...

  7. jQuery的两把利器

    1 jQuery核心函数 * 简称: jQuery函数($/jQuery) * jQuery库向外直接暴露的就是$/jQuery * 引入jQuery库后, 直接使用$即可 * 当函数用: $(xxx ...

  8. Quick BI功能篇之(一):20分钟入门

    前言: 最近小编帮助隔壁团队一个小姐姐解决了个大难题:给老板汇报业绩分析,频次提高.效率提升,还得保证团队中的小伙伴们都得有点大数据时代的基本数据能力.小编觉得这么好的经验可以分享给更多志同道合的朋友 ...

  9. Struts功能详解——ValidatorForm

    ActionForm和ValidatorForm区别:       一个Form继承了ValidatorForm 就不用写具体的验证,但是需要提供:validation-rules.xml 和 val ...

  10. 56 Marvin: 一个支持GPU加速、且不依赖其他库(除cuda和cudnn)的轻量化多维深度学习(deep learning)框架介绍

    0 引言 Marvin是普林斯顿视觉实验室(PrincetonVision)于2015年提出的轻量化GPU加速的多维深度学习网络框架.该框架采用纯c/c++编写,除了cuda和cudnn以外,不依赖其 ...