Division expression

Description

除法表达式有如下的形式: \(X_1/X_2/X_3.../X_k\) 其中Xi是正整数且\(X_i \le 1000000000(1 \le i \le k,K \le 10000)\) 除法表达式应当按照从左到右的顺序求,例如表达式1/2/1/2的值为1/4.但可以在表达式中加入括号来改变计算顺序,例如(1/2)/(1/2)的值为1.现给出一个除法表达式E,求是告诉是否可以通过增加括号来使其为E',E'为整数。

Input

先给出一个数字D,代表有D组数据. 每组数据先给出一个数字N,代表这组数据将有N个数。 接下来有N个数

Output

如果能使得表达式的值为一个整数,则输出YES.否则为NO

Sample Input

2
4
1
2
1
2
3
1
2
3

Sample Output

YES
NO

思路

观察这个式子\(E = X_1 / X_2 / X_3 .... / X_n\)

我们设\(E' = X_{a1} * X_{a2}..../ X_{b1} / X_{b2}....\)

即把加括号后的式子改成分数线的形式,有一些元素属于分子,其他的元素属于分母。

我们发现:

  • \(X_1\) 不得不在分子 没有为什么 就是不可以
  • \(X_2\) 不得不在分母 因为你想让它去分母它也不可能到分母
  • \(X_3 \ to \ X_n\) 可在分子也可在分母 总是有办法的QAQ

如果叫你把\(X_3 \ to \ X_n\)分一部分在分子,其他的在分母,你会怎么做?? 当然是把全部元素放在分子呗。。。

因此最优的 \(E' = X_1 * X_3 * X_4....* X_n / X_2\)

如果真的乘起来的话肯定会溢出,所以当然要用GCD。

清爽的30行代码$(~ ̄▽ ̄)~ $

代码

#include<cstdio>
using namespace std;
#define MAXN 10005 int T;
int n, t, s; int gcd( int x, int y ){
return x % y == 0 ? y : gcd( y, x % y );
} int main(){
scanf( "%d", &T );
while( T-- ){
scanf( "%d", &n );
scanf( "%d", &t );
if ( n == 1 ){//注意特判
printf( "YES\n" ); continue;
}
scanf( "%d", &s );
s /= gcd( s, t );
for ( int i = 3; i <= n; ++i ){
scanf( "%d", &t );
s /= gcd( s, t );
}
if ( s == 1 ) printf( "YES\n" );
else printf( "NO\n" );
}
return 0;
}

「BZOJ1385」「Baltic2000」Division expression 解题报告的更多相关文章

  1. 「SHOI2016」黑暗前的幻想乡 解题报告

    「SHOI2016」黑暗前的幻想乡 sb题想不出来,应该去思考原因,而不是自暴自弃 一开始总是想着对子树做dp,但是状态压不起去,考虑用容斥消减一些条件变得好统计,结果越想越乱. 期间想过矩阵树定理, ...

  2. 「ZJOI2015」地震后的幻想乡 解题报告

    「ZJOI2015」地震后的幻想乡 想了半天,打开洛谷题解一看,最高票是_rqy的,一堆密密麻麻的积分差点把我吓跑. 据说有三种解法,然而我只学会了一种最辣鸡的凡人解法. 题意:给一个无向图\(G\) ...

  3. 「SCOI2014」方伯伯的玉米田 解题报告

    #2211. 「SCOI2014」方伯伯的玉米田 发现是取一个最长不下降子序列 我们一定可以把一个区间加的右端点放在取出的子序列的最右边,然后就可以dp了 \(dp_{i,j}\)代表前\(i\)个玉 ...

  4. 「洛谷P1306」斐波那契公约数 解题报告

    P1306 斐波那契公约数 题目描述 对于Fibonacci数列:1,1,2,3,5,8,13......大家应该很熟悉吧~~~但是现在有一个很"简单"问题:第n项和第m项的最大公 ...

  5. 「洛谷P2397」 yyy loves Maths VI (mode) 解题报告

    P2397 yyy loves Maths VI (mode) 题目背景 自动上次redbag用加法好好的刁难过了yyy同学以后,yyy十分愤怒.他还击给了redbag一题,但是这题他惊讶的发现自己居 ...

  6. 「USACO11NOV」牛的障碍Cow Steeplechase 解题报告

    题面 横的,竖的线短段,求最多能取几条没有相交的线段? 思路 学过网络流的童鞋在哪里? 是时候重整网络流雄风了! 好吧,废话不多说 这是一道最小割的题目 怎么想呢? 要取最多,那反过来不就是不能取的要 ...

  7. 「Luogu P2508」[HAOI2008]圆上的整点 解题报告

    题面 给定圆的半径,求圆上整点数 这是一道很Nice的数学题!超爱!好吧,由于这道题,我去Study了一下复数(complex number)复杂的数 真棒!!! 有兴趣的戳这里!!!\(\huge ...

  8. 【BZOJ】【1385】【Baltic2000】Division expression

    欧几里得算法 普通的求个gcd即可……思路题 因为要求尽量是整数……所以 $\frac{x_1}{x_2*x_3*x_4*....*x_n}$是最大的结果了,因为$x_2$必须为分母,$x_1$必须为 ...

  9. 「kuangbin带你飞」专题十四 数论基础

    layout: post title: 「kuangbin带你飞」专题十四 数论基础 author: "luowentaoaa" catalog: true tags: mathj ...

随机推荐

  1. Python深入:stevedore简介

    stevedore是用来实现动态加载代码的开源模块.它是在OpenStack中用来加载插件的公共模块.可以独立于OpenStack而安装使用:https://pypi.python.org/pypi/ ...

  2. HZOJ 旋转子段

    作者的正解: 算法一:对于30%的数据: 直接枚举区间直接模拟,时间复杂度O(N3). 算法二:对于60%的数据:枚举旋转中心点,然后再枚举旋转的端点, 我们可以用O(n)的预处理求前缀和记录固定点, ...

  3. 在VirtualBox下安装linux操作系统

    目标:在linux服务器上部署Java开发的网站 工具 VirtualBox-4.3.8:下载后安装. linux系统镜像: Centos国内镜像文件下载地址: http://centos.ustc. ...

  4. 性能改善后复杂SQL

    <?xml version="1.0" encoding="UTF-8" ?><!DOCTYPE mapper PUBLIC "-/ ...

  5. iptables 详细使用

    检查状态 先检查是否安装了iptables $ service iptables status 安装iptables $ yum install iptables 升级iptables $ yum u ...

  6. 详解ThinkPHP支持的URL模式有四种普通模式、PATHINFO、REWRITE和兼容模式

    URL模式     URL_MODEL设置 普通模式    0 PATHINFO模式     1 REWRITE模式     2 兼容模式     3 如果你整个应用下面的模块都是采用统一的URL模式 ...

  7. Educational Codeforces Round 12 B C题、

    B. Shopping 题意:n个顾客,每个顾客要买m个物品,商场总共有k个物品,看hint就只知道pos(x)怎么算了,对于每一个Aij在k个物品中找到Aij的位置.然后加上这个位置对于的数值,然后 ...

  8. Python--day69--ORM多对多查询

    ManyToManyField class RelatedManager "关联管理器"是在一对多或者多对多的关联上下文中使用的管理器. 它存在于下面两种情况: 外键关系的反向查询 ...

  9. 2015年NOIP普及组复赛题解

    题目涉及算法: 金币:入门题: 扫雷游戏:入门题: 求和:简单数学推导: 推销员:贪心. 金币 题目链接:https://www.luogu.org/problem/P2669 入门题,直接开一个循环 ...

  10. php页面最大执行时间 set_time_limit函数不起作用

      作者: default|标签:PHP set_time_limit 执行时间|2017-3-21 15:03   set_time_limit 不生效或者无效解决方法 <?php globa ...