版权声明:本文为博主原创文章,未经博主同意不得转载。

https://blog.csdn.net/xingyeyongheng/article/details/25205693

LOOPS

Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 125536/65536 K (Java/Others)
Total Submission(s): 1651    Accepted Submission(s): 653

Problem Description
Akemi Homura is a Mahou Shoujo (Puella Magi/Magical Girl).

Homura wants to help her friend Madoka save the world. But because of the plot of the Boss Incubator, she is trapped in a labyrinth called LOOPS.


The planform of the LOOPS is a rectangle of R*C grids. There is a portal in each grid except the exit grid. It costs Homura 2 magic power to use a portal once. The portal in a grid G(r, c) will send Homura to the grid below G (grid(r+1, c)), the grid on the
right of G (grid(r, c+1)), or even G itself at respective probability (How evil the Boss Incubator is)!
At the beginning Homura is in the top left corner of the LOOPS ((1, 1)), and the exit of the labyrinth is in the bottom right corner ((R, C)). Given the probability of transmissions of each portal, your task is help poor Homura calculate the EXPECT magic power
she need to escape from the LOOPS.

 

Input
The first line contains two integers R and C (2 <= R, C <= 1000).

The following R lines, each contains C*3 real numbers, at 2 decimal places. Every three numbers make a group. The first, second and third number of the cth group of line r represent the probability of transportation to grid (r, c), grid (r, c+1), grid (r+1,
c) of the portal in grid (r, c) respectively. Two groups of numbers are separated by 4 spaces.

It is ensured that the sum of three numbers in each group is 1, and the second numbers of the rightmost groups are 0 (as there are no grids on the right of them) while the third numbers of the downmost groups are 0 (as there are no grids below them).

You may ignore the last three numbers of the input data. They are printed just for looking neat.

The answer is ensured no greater than 1000000.

Terminal at EOF

 

Output
A real number at 3 decimal places (round to), representing the expect magic power Homura need to escape from the LOOPS.

 

Sample Input

2 2
0.00 0.50 0.50 0.50 0.00 0.50
0.50 0.50 0.00 1.00 0.00 0.00
 

Sample Output

6.000
/*题意:有一个迷宫r行m列,開始点在[1,1]如今要走到[r,c]
对于在点[x,y]能够打开一扇门走到[x+1,y]或者[x,y+1]
消耗2点魔力
问平均消耗多少魔力能走到[r,c] 分析:如果dp[i][j]表示在点[i,j]到达[r,c]所须要消耗的平均魔力(期望)
则从dp[i][j]能够到达:
dp[i][j],dp[i+1,j],dp[i][j+1];
相应概率分别为:
p1,p2,p3
由E(aA+bB+cC...)=aEA+bEB+cEC+...//包括状态A,B,C的期望能够分解子期望求解
得到dp[i][j]=p1*dp[i][j]+p2*dp[i+1][j]+p3*dp[i][j+1]+2;
*/
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <queue>
#include <algorithm>
#include <map>
#include <cmath>
#include <iomanip>
#define INF 99999999
typedef long long LL;
using namespace std; const int MAX=1000+10;
int n,m;
double dp[MAX][MAX],p[MAX][MAX][3]; int main(){
while(~scanf("%d%d",&n,&m)){
for(int i=1;i<=n;++i){
for(int j=1;j<=m;++j)scanf("%lf%lf%lf",&p[i][j][0],&p[i][j][1],&p[i][j][2]);
}
memset(dp,0,sizeof dp);
for(int i=n;i>=1;--i){
for(int j=m;j>=1;--j){
if(i == n && j == m)continue;
if(p[i][j][0] == 1.00)continue;//该点无路可走,期望值肯定为0(dp[i][j]=0)
dp[i][j]=(p[i][j][1]*(dp[i][j+1])+p[i][j][2]*(dp[i+1][j])+2)/(1-p[i][j][0]);
}
}
printf("%.3lf\n",dp[1][1]);
}
return 0;
}

hdu3853之概率dp入门的更多相关文章

  1. HDU 3853 LOOPS 概率DP入门

    LOOPS Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 125536/65536 K (Java/Others)Total Sub ...

  2. hdu3853 LOOPS(概率dp) 2016-05-26 17:37 89人阅读 评论(0) 收藏

    LOOPS Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 125536/65536 K (Java/Others) Total Su ...

  3. 概率DP入门学习QAQ

    emmmm博客很多都烂尾了...但是没空写..先写一下正在学的东西好了 概率DP这东西每次考到都不会..听题解也是一脸懵逼..所以决定学习一下这个东东..毕竟NOIP考过...比什么平衡树实在多了QA ...

  4. 概率dp入门

    概率DP主要用于求解期望.概率等题目. 转移方程有时候比较灵活. 一般求概率是正推,求期望是逆推.通过题目可以体会到这点. poj2096:Collecting Bugs #include <i ...

  5. HDU 4405:Aeroplane chess(概率DP入门)

    http://acm.split.hdu.edu.cn/showproblem.php?pid=4405 Aeroplane chess Problem Description   Hzz loves ...

  6. poj 2096 Collecting Bugs 概率dp 入门经典 难度:1

    Collecting Bugs Time Limit: 10000MS   Memory Limit: 64000K Total Submissions: 2745   Accepted: 1345 ...

  7. [hdu3853]LOOPS(概率dp)

    题意:迷宫是一个R*C的布局,每个格子中给出停留在原地,往右走一个,往下走一格的概率,起点在(1,1),终点在(R,C),每走一格消耗两点能量,求出最后所需要的能量期望. 解题关键:概率dp反向求期望 ...

  8. 洛谷P2719 搞笑世界杯 题解 概率DP入门

    作者:zifeiy 标签:概率DP 题目链接:https://www.luogu.org/problem/P2719 我们设 f[n][m] 用于表示还剩下n张A类票m张B类票时最后两张票相同的概率, ...

  9. POJ 2096-Collecting Bugs(概率dp入门)

    题意: 有n种bug和s种系统bug,每天发现一种bug(可能已经发现过了)所有种bug被发现的概率相同,求所有bug被发现的期望天数. 分析: dp[i][j]发现i种bug,j种系统bug期望天数 ...

随机推荐

  1. IEnumerable_vs_IEnumerator

    using System; using System.Collections; using System.Collections.Generic; using System.Linq; using S ...

  2. Spring IOC基础回顾 — 组件扫描和装配

    目录 注解形式配置应用IOC 1. 组件自动扫描 2. 组件依赖:为bean添加注解,实现自动注入 3. Spring IOC应用小结 注解形式配置应用IOC 在类定义.方法定义.成员变量定义前使用, ...

  3. pip的使用方法简介

    pip是Python包管理工具,它提供了对Python包的查找.下载.安装.卸载的功能 目前如果你在 python.org 下载最新版本的安装包,则是已经自带了该工具. 以下是pip常用命令 显示版本 ...

  4. <数据可视化>样例+数据+画图

    1 样例 1.1样例1 子图系列 from pylab import * def f(x): return np.exp(-x) * np.cos(2*np.pi*x) x1 = np.arange( ...

  5. [Vue warn]: Failed to mount component: template or render function not defined. 错误解决方法

    解决方法import Vue from "vue"; 默认引入的文件是 vue/dist/vue.runtime.common.js.这个可以在node_modules/vue/p ...

  6. Widget Factory

    Widget Factory 有N种零件,生产所需天数都为3~9天,有M条记录,记录开工星期几,和停工星期几,并告诉你这条记录所加工的零件,求每种零件的生产时间,\(1≤N,M≤300\). 解 显然 ...

  7. linux yum 安装 卸载

    安装一个软件时 yum -y install httpd 安装多个相类似的软件时 yum -y install httpd* 安装多个非类似软件时 yum -y install httpd php p ...

  8. [JZOJ1320] 【Usaco2009 gold 】拯救奶牛

    题目 题目大意 一个三角形的网格图,三角形与其有共同边的三角形相连. 起点到所有终点的最短距离. 思考历程 数据看起来还挺大的,所以不是什么图论算法. 这显然是一个结论题. 什么结论? 然后我就开始推 ...

  9. 2017.1.16【初中部 】普及组模拟赛C组总结

    2017.1.16[初中部 ]普及组模拟赛C组 这次总结我赶时间,不写这么详细了. 话说这次比赛,我虽然翻了个大车,但一天之内AK,我感到很高兴 比赛 0+15+0+100=115 改题 AK 一.c ...

  10. Ubuntu 快速安装配置Odoo 12

    Odoo 12预计将于今年10月正式发布,这是一次大版本更新,带来了一些不错的新特性,如 文件管理系统(DMS) 用户表单中新增字段(Internal user, Portal, Public) HR ...